

CID-Keyed sfnt
Font File Format
for the Macintosh

Adobe Developer Support
Version 2.0

Technical Note #5180

12 February 1997
PN LPS5180

Adobe Systems Incorporated

Corporate Headquarters
345 Park Avenue
San Jose, CA 95110
(408) 536-6000 Main Number
(408) 536-9000 Developer Support
Fax: (408) 536-6883

European Engineering Support Group
Adobe Systems Benelux B.V.
P.O. Box 22750
1100 DG Amsterdam
The Netherlands
+31-20-6511 355
Fax: +31-20-6511 313

Adobe Systems Eastern Region
24 New England
Executive Park
Burlington, MA 01803
(617) 273-2120
Fax: (617) 273-2336

Adobe Systems Co., Ltd.
Yebisu Garden Place Tower
4-20-3 Ebisu, Shibuya-ku
Tokyo 150
Japan
+81-3-5423-8169
Fax: +81-3-5423-8204

Copyright



 1994, 1996, 1997 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript is a trademark of Adobe Systems Incorporated. All instances of the name PostScript in the
text are references to the PostScript language as defined by Adobe Systems Incorporated unless other-
wise stated. The name PostScript also is used as a product trademark for Adobe Systems’ implemen-
tation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers,
files, and driver programs (respectively) which are written in or support the PostScript language. The
sentences in this book that use “PostScript language” as an adjective phrase are so constructed to rein-
force that the name refers to the standard language definition as set forth by Adobe Systems Incorpo-
rated.

Adobe, Adobe Type Manager, ATM, Display PostScript, PostScript and the PostScript logo are trade-
marks of Adobe Systems Incorporated which may be registered in certain jurisdictions. Apple and
Macintosh are registered trademarks and QuickDraw and TrueType are trademarks of Apple Computer
Incorporated. Microsoft and Windows are registered trademarks of Microsoft Corporation. CJK is a
registered trademark and service mark of The Research Libraries Group, Inc. All other brand or prod-
uct names are the trademarks or registered trademarks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorpo-
rated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any
kind (express, implied or statutory) with respect to this publication, and expressly disclaims any and
all warranties of merchantability, fitness for particular purposes and noninfringement of third party
rights.

Contents
CID-Keyed sfnt Font File Format for the Macintosh 1

1 Introduction 1
Purpose of this Document 2
Conventions Used in this Document 2

2 The CID sfnt Format 2
Compatibility 3
Glyph Transformations 3

3 CID sfnt Font Format Overview 4
Guidelines for Version Checking 6
Overview of CID sfnt Tables 6

4 ALMX 7

5 BBOX 11

6 CID 12
CID Table for a Rearranged CID Font 13

7 COFN 14

8 COSP 16

9 FNAM 18

10 HFMX 20

11 VFMX 21

12 QuickDraw and Rearranged Font Compatibility Issues 24
How Encodings are Selected in QuickDraw Compatibility Mode 24
Rearranged CID sfnt Fonts 25

Appendix A: sfnt Data Types 27

Appendix B: Bibliography 29

Appendix C: Glossary 33

Appendix D: Binary Search and Lookup Table Formats 35
iii

iv (12 Feb 97)

CID-Keyed sfnt
Font File Format
for the Macintosh
1 Introduction

This document describes the CID sfnt font format for the Macintosh. It
describes only those extensions made by Adobe to Apple’s format to accom-
modate CID-keyed fonts. Also, it assumes familiarity with the sfnt specifica-
tion published by Apple Computer (see Appendix B).

A CID-keyed sfnt font consists of a PostScript CID-keyed font program (the
CIDFont) embedded in a subtable of a sfnt wrapper. The CID-keyed format
was designed for maximum flexibility and performance for large character
set fonts such as for Chinese, Japanese, and Korean (CJK) language fonts.
The format supports both regular and rearranged CID-keyed fonts.

For more information on the CID-keyed font file format, see Adobe Technical
Note #5014, “Adobe CMap and CIDFont Files Specification,” and #5092,
“CID-Keyed Font Technology Overview.” Also, a CID Software Developers
Kit (SDK) is available from the Adobe Developers Association.

This document describes only a few tables beyond the minimum number
required for a CID sfnt font. For example, the ALMX table allows the specifi-
cation of alternate metrics for proportionally spaced characters. Also, a
number of other advanced features can be supported by using the mort table
(the format of the mort table is specified in the Apple documentation).

This document also includes:

• Appendix A: sfnt Data Types

• Appendix B: Bibliography

• Appendix C: Glossary

• Appendix D: sfnt Binary Search and Lookup Table Formats
1

1.1 Purpose of this Document

This document describes how to make CID-keyed fonts for use in future
Macintosh operating systems which are likely to support only fonts in the sfnt
format. Font developers who currently have CID-keyed fonts, or PostScript
language OCF (Original Composite Format) fonts, must convert these into
the sfnt format for use with future Macintosh systems. OCF fonts can be con-
verted to the CID-keyed font file format, and a CID-keyed font can be con-
verted into the sfnt format by embedding the CIDFont into a subtable of the
sfnt resource.

For the future, the best way to develop full-featured fonts for the broadest
possible market will be to use the new OpenType™ font format, which is
being jointly developed by Adobe Systems and Microsoft Corporation. For
the immediate future, developers who wish to make multi-byte fonts for the
upcoming Macintosh operating systems should use the CID sfnt format.

Both the sfnt and OpenType formats are essentially font packaging formats
which allow the embedding of a CID-keyed font as a single subtable. This
means that it should be relatively easy, in the future, for font developers to
convert CID sfnt fonts into the OpenType format.

1.2 Conventions Used in this Document

In this document, all sfnt table names and table elements are represented in a
sans serif typeface, and PostScript language and Type 1 font program opera-
tors are represented in a bold sans serif style.

References to documents include full information in the first reference, and
subsequent references may use a shortened form. Please refer to Appendix B
for complete bibliographic information.

2 The CID sfnt Format

A CID sfnt font consists of an sfnt “wrapper” that contains a complete
CIDFont as a subtable. The tables in the sfnt wrapper are identified by unique
four-character tags – for example, ‘cmap’. The names of all data tables
defined by Apple use all lowercase characters. All non-Apple tables devel-
oped by Adobe are in all uppercase letters – for example,‘CID’.

A CID sfnt font is distinguished from a TrueType font by having the tag
‘typ1’ stored in the 4-byte Fixed version field of the sfnt header (see Table 1),
whereas a TrueType font has either the tag ‘true’, or the value 1.0. A CID-
keyed Type 1 sfnt font is distinguished from a Type 1 Roman sfnt font by the
presence of a CID table, and the absence of a TYP1 table.
2 CID-Keyed sfnt Font File Format for the Macintosh (12 Feb 97)

Conceptually, there are three categories of sfnt tables. The system-specific
tables, such as name and cmap, are required by every font in order to register
it and enable the operating system to use it. The optional layout-specific
tables are those used to format text (which are not described in this docu-
ment). Finally, the rasterizer-specific tables are those used by either the
Type 1 rasterizer, or the TrueType rasterizer, to rasterize glyphs, generate
glyph outlines, prepare the font for downloading, or return kerning informa-
tion. The tables described in this document are those in the first and third cat-
egories.

Note A CID sfnt font does not use the form of the CMap file described in Adobe
Technical Note #5014, “Adobe CMap and CIDFont Files Specification.”
Instead, the Apple-defined cmap table is used for character encoding.

2.1 Compatibility

A CID sfnt font defined by this specification will work with both QuickDraw
and QuickDraw GX. The font will work with QuickDraw by having an
FNAM table, which also allows Adobe Type Manager® software (ATM®) to
use QuickDraw NFNT resources to display bitmaps for QuickDraw GX. The
FNAM table is also used to select a cmap subtable for encoding. For more
information on how encodings are selected in compatibility mode, see section
12.1.

To print CID-keyed sfnt fonts on a PostScript language printer, the CID-
keyed font must be extracted from the sfnt wrapper. This can be accom-
plished by getting the offset and length of the CIDFont in the sfnt resource
Table Directory (see Figure 2).

The CID sfnt format also allows the use of rearranged CID-keyed fonts; for
more information, see section 12.2.

2.2 Glyph Transformations

The CID sfnt format allows the specification of a set of transformations that
can be applied to the glyphs in the font. For CJK fonts, this may include fea-
tures such as ligature substitution and the specification of alternate metrics
for proportionally spaced glyphs.

These glyph transformations are achieved by using the glyph metamorphosis
table (tag name: mort), which is defined and documented by Apple. In the
case of providing alternate metrics for proportionally spaced glyphs, the
CID-specific table ALMX (Alternate Metrics) table, defined by Adobe and
described in section 4 of this document, must be used.
2 The CID sfnt Format 3

3 CID sfnt Font Format Overview

Macintosh sfnt fonts are required to be part of a suitcase (an FFIL resource
file). Additionally, the suitcase must contain at least one FOND resource, and
may optionally contain other resources such as bitmap fonts (NFNT
resources) for screen display.

Figure 1 sfnt Font File Organization

Information on how Macintosh resources are constructed is contained in
Inside Macintosh – More Macintosh Toolbox; Chapter 1: Resource Manager.

Figure 2 shows the contents of the sfnt resource. The tables may be in any
order, but the Table List entries must be sorted into tag order.

Figure 2 Layout of the sfnt

header

map

NFNT resource

FOND resource

other
resources

sfnt
resource

VFMX

Table
List

Table List Entry

CID

cmap

Table
Directory

Tables

tag

checksum
offset
length

Header
4 CID-Keyed sfnt Font File Format for the Macintosh (12 Feb 97)

The contents of the sfnt Header are shown in Table 1.

Table 1 sfnt Header

Type Field

Fixed version

uint16 numTables

uint16 searchRange

uint16 entrySelector

uint16 rangeShift

The version field originally contained the sfnt format version number, 1.0
(0x00010000). However, the purpose changed with the introduction of
QuickDraw GX, and this field is now used to identify a rasterizer for the font.
Type 1 fonts use the tag ‘typ1’; older TrueType fonts use the value 1.0
(0x00010000), and newer TrueType fonts use the tag ‘true’ as the value for
this field.

The numTables field specifies the number of entries in the Table List (where
each entry has four fields, as shown in Table 2).

The searchRange, entrySelector, and rangeShift fields provide values
intended to speed the binary search of the Table List. Please consult
“QuickDraw GX Font Formats: The TrueType Font Format Specification” for
more information.

Following the sfnt Header is the Table List, where each entry identifies and
points to one table in the sfnt as shown in Table 2.

Table 2 Table List Entry

Type Field

uint32 tag

uint32 checksum

uint32 offset

uint32 length

The tag field identifies the table by using an ASCII representation of the
table’s name. Table names shorter than four characters are padded with the
code for a blank character.

The checksum field contains a checksum of all bytes contained in the table.
3 CID sfnt Font Format Overview 5

The offset field contains the byte offset from the beginning of the sfnt to the
start of the table.

The length field contains the length of the table in bytes. Note that each sfnt
table is padded to a long-word (4-byte) boundary.

3.1 Guidelines for Version Checking

Version numbers for individual sfnt tables are stored as 4-byte Fixed values
and are of the form x.y, where x is the major version number, and y is the
minor version number. Following Apple’s convention, the version numbers
are represented in a hexadecimal format; for example, version 1.1 is repre-
sented as 0x00010001.

Applications should always check the version number of all sfnt tables before
they are used. Each revision or extension of a table will be documented in this
specification.

If the major version number is greater than the version understood by the
application, the table should not be read and the application should take the
appropriate action. Minor revisions are those that allow the application to
safely ignore, for example, fields added to the end of a table. If differences in
the minor version are found, some information may not be used, but use of
the font file can continue safely.

3.2 Overview of CID sfnt Tables

A CID sfnt font must contain the cmap, fdsc, and name tables. The following
tables are specific to CID-keyed sfnt fonts:

ALMX (required if proportionally-spaced characters are included in the font)
The Alternate Metrics table (ALMX) specifies the metrics for proportionally
spaced characters.

BBOX (required)
This table specifies bounding boxes for all glyphs in the font.

CID (required)
This table contains the CIDFont file. For a rearranged CID font, it contains
encoding information rather than glyph descriptions.

COFN (required for rearranged CID sfnt fonts)
Table used only for rearranged CID sfnt fonts; it contains the QuickDraw font
name for each component font used in the rearranged font.

COSP (required for rearranged CID sfnt fonts)
This table, used only for rearranged CID sfnt fonts, defines the code space of
a rearranged font.
6 CID-Keyed sfnt Font File Format for the Macintosh (12 Feb 97)

FNAM (required for QuickDraw compatibility)
This table maps FOND resource names and styles and is used for compatibil-
ity with QuickDraw.

HFMX (required)
This table provides font metric information related to setting horizontal lines
of text. These values are font-wide metrics such as ascent, descent, line gap
and caret information values.

VFMX (required)
This table provides vertical metric information such as the per-glyph vertical
advance and origin shift information.

The following sections give a more detailed description of the CID-keyed
font–specific tables in a CID sfnt font. The tables are discussed in alphabetic
order.

Note A number of tables contain fields that duplicate information stored elsewhere
in the font. While redundant, this makes these tables more self-contained and
simplify their use.

4 ALMX

The ALMX table provides for alternate metrics that override the existing met-
rics of the glyphs in the CID-keyed font. The new glyphs defined in this table
are intended to be used with non-contextual glyph substitution for propor-
tional Japanese fonts.

The ALMX table consists of a header followed by a Lookup table, as shown in
Figure 3. The Lookup table may be in format 0, 2, 4, 6, or 8, as described in
Appendix E.

Figure 3 The ALMX Table

The format of the ALMX Header table is shown in Table 3.

ALMX Header

ALMX Lookup
Table
4 ALMX 7

Table 3 ALMX Header Table

Type Field

Fixed version

uint16 flags

uint16 nMasters

uint16 firstGlyph

uint16 lastGlyph

The version field should be set to 1.0 (0x00010000).

The flags field is reserved for future use, and should be set to zero.

The nMasters field must have a value of 1 (for non-multiple master fonts).

firstGlyph is the first index of valid glyphs specified in the lookup table.

lastGlyph is the last index of valid glyphs specified in the lookup table.

The ALMX Lookup Table consists of a header followed by a lookup data sec-
tion, as shown in Figure 4.

Figure 4 ALMX Lookup Table

The format of the ALMX Lookup Table can be any one of the five lookup table
formats; Table 4 shows the form used for formats 0, 2, 6, and 8.

Table 4 ALMX Lookup Data for Formats 0, 2, 6, and 8

Type Field

ALMXDataEntry ALMXDataEntry

ALMX Lookup
Table Header

ALMX Lookup
Table Segments

Optional Subtables
8 CID-Keyed sfnt Font File Format for the Macintosh (12 Feb 97)

The contents of the ALMXDataEntry is shown in Table 5. This format is used
for the Lookup Table segments as well as for any optional subtables that may
be present.

Table 5 ALMXDataEntry

Type Field

int16 glyphIndexOffset

FUnit horizontalAdvance

FUnit xOffsetToHOrigin

FUnit verticalAdvance

FUnit yOffsetToVOrigin

glyphIndexOffset is the offset to the glyph index of the glyph whose metrics
are being modified.

horizontalAdvance specifies the horizontal advance of the glyph in the hori-
zontal writing mode (specified in FUnits).

xOffsetToHOrigin specifies the horizontal offset from the original origin to the
new origin in the horizontal writing mode (specified in FUnits).

verticalAdvance specifies the vertical advance of the glyph in the vertical
writing mode (specified in FUnits).

yOffsetToVOrigin specifies the vertical offset from the original origin to the
new origin in the vertical writing mode (specified in FUnits).

Table 6 ALMX Lookup Data for Format 4

Type Field

uint8 flags

uint24 offsetToSubTable

The flags field is defined as shown in Table 7.

Table 7 flags Values for the ALMX Lookup Data

Name Value

ONE_ENTRY_IN_SUBTABLE 0x80
4 ALMX 9

The flags field may have a flag ONE_ENTRY_IN_SUBTABLE set to indicate
that there is only one entry in the subtable. The other bits are reserved for
future use, and should be set to zero.

The offsetToSubTable field contains the offset to the subtable, which is shown
in Table 8.

Table 8 ALMX SubTable

Type Field

ALMXDataEntry ALMXSubTableEntry[<variable>]

The number of entries contained in ALMXSubTableEntry for a lookup seg-
ment depends on the value of the flags bit. Each lookup data has an offset
from the start of the lookup table to the subtable which contains the metrics
information. When the ONE_ENTRY_IN_SUBTABLE flag is set in flags, there
is only one entry in the subtable, and the metrics in the entry applies to all
glyphs in the segment. When this bit is not set, the subtable has one entry for
each glyph in the segment, and it is indexed by the glyph index minus the first
glyph index in the lookup segment.

Figure 5 shows the character metrics values associated with a glyph refer-
enced by an entry in the ALMX table.

Figure 5 Alternate Metrics Example

Typical uses of the ALMX table are as follows. When GlyphIndexOffset is
zero, the CID glyph with the same glyph index used to index this table is
redefined to have the new metrics specified in this table. When the GlyphIn-

New H Origin Horizontal Advance(ALMX)

New V Origin

Vertical Advance(ALMX)

Old V Origin
YOffsetToVOrigin(ALMX)

Old H Origin

XOffsetToHOrigin(ALMX)

X/YOffsetToVOrigin(VFMX)
10 CID-Keyed sfnt Font File Format for the Macintosh (12 Feb 97)

dexOffset is not zero, a new glyph is defined based on the glyph whose glyph
index is calculated by adding GlyphIndexOffset to the glyph index of this
glyph.

If the listed metrics value is greater than 32000, the default metrics of the
specified glyph charstring are used.

If a glyph has metrics specified in both the ALMX and VFMX table, the met-
rics specified in the ALMX table override those in the VFMX table.

5 BBOX

The BBOX table specifies the bounding boxes for all the glyphs in the font.

Table 9 BBOX Table

Type Field

Fixed version

uint16 flags

uint16 nGlyphs

uint16 nMasters

BBox bbox[nGlyphs]

The version field should be set to 1.0 (0x00010000).

The flags field is reserved for future use, and should be set to 0.

The nGlyphs field specifies the number of glyphs in the font. Its value is equal
to the CIDCount field for a CID-keyed font.

The nMasters field must have a value of 1 for non–multiple master fonts.

bbox is an array of BBox elements, described below.

Table 10 BBox Element

Type Field

FWord left

FWord bottom

FWord right

FWord top

The metric left is the minimum x-coordinate of the glyph bounding box.
5 BBOX 11

The metric bottom is the minimum y-coordinate of the glyph bounding box.

The metric right is the maximum x-coordinate of the glyph bounding box.

The metric top is the maximum y-coordinate of the glyph bounding box.

6 CID

The CID table consists of two parts, the CID Header table, and the CIDFont
data, which contains the glyphs. The layout of the CID table is shown in
Figure 6.

Figure 6 CID Table Layout

The contents of the table depends on whether the CID font is a regular CID-
keyed font, or a rearranged CID-keyed font. The format for a regular CID-
keyed sfnt font is shown in Table 11.

Table 11 CID Header Table

Type Field

Fixed version

uint16 flags

uint16 CIDCount

uint32 CIDFontLength

uint32 asciiLength

uint32 binaryLength

uint16 FDCount

The version field should be set to 1.0 (0x00010000).

The flags field bits are defined in Table 12.

CID Header

CIDFont Data
12 CID-Keyed sfnt Font File Format for the Macintosh (12 Feb 97)

Table 12 flags Values for the CID Table

Name Value Description

CID_REARRANGED_FONT 0x0001 Specifies a rearranged CID
font

The flags field may have a flag CID_REARRANGED_FONT set to indicate
that the font is a rearranged font. If not set, the font is a CID font. The other
bits are reserved and should be set to zero.

Continuing with the entries in the CID Header table, CIDCount must be equal
to the value specified by the CIDCount key in the CIDFont. For a rearranged
CID sfnt font, this value must be set to the total number of glyph indices
assigned in the rearranged font.

CIDFontLength is the total length of this table excluding the header part.

AsciiLength is the length of the ASCII part of the CIDFont, and it is equal to
the file offset to the beginning of the binary section of the CIDFont.

BinaryLength is the length of the binary section of the CIDFont.

FDCount is the number of font dictionaries defined in the FDArray of the
CID-keyed font.

6.1 CID Table for a Rearranged CID Font

If the CID_REARRANGED_FONT flag is set, then the font is a rearranged
CID font. For a rearranged CID font, the AsciiLength specifies the length of
the rearrangement recipe part that begins with %ADOStartRearrangedFont
and terminates with %%EndResource. An example of a rearranged CID sfnt
font is shown in Example 1, shown below.

BinaryLength field specifies the length of the rearranged font procset portion
at the beginning of the font.

Note A rearranged font, unlike a CIDFont, has a binary section (the ProcSet por-
tion) before the ASCII section. It does not contain binary charstrings, it only
references those in the component CIDFont files.

The other fields, CIDCount and FDCount, are not used and should be set to
zero.

The following is an example of a rearranged CID font (for more information,
see Adobe Technical Note #5014, “Adobe CMap and CIDFont Files Specifi-
cation 1.0.”).
6 CID 13

In this example, the template font is HeiseiMin-W3 (a CID-keyed font); kana
characters from ShinGo-Light have been substituted; Tekton is specified as
the Roman font. There is a +100 baseline shift (the original baseline was at
120, so the final baseline is at +220/1000 of the em space). Also, Gaiji char-
acters are used from HeiseiMin-W3 Gaiji01.

Example 1: Sample Rearranged CID sfnt Font

< binary CSL procset data >

%ADOStartRearrangedFont

/HeiseiMin-W3-KS-G-RT-90pv-RKSJ-H [/HeiseiMin-W3-90pv-RKSJ-H

/Tekton /ShinGo-Light-83pv-RKSJ-H /HeiseiMin-W3-G01]

beginrearrangedfont

1 beginusematrix [1 0 0 1 0 0.1] endusematrix

1 usefont

9 beginbfrange

<00> <26> <00>

<27> <27> <a9>

<28> <5b> <28>

<5c> <5c> <a5>

<5d> <5f> <5d>

<60> <60> <c1>

<61> <7d> <61>

<7e> <7e> <c4>

<7f> <7f> <7f>

endbfrange

2 usefont

10 beginbfrange

<8152> <8155> <8152>

<815b> <815b> <815b>

<829f> <82f1> <829f>

<8340> <837e> <8340>

<8380> <8396> <8380>

<eb52> <eb55> <eb52>

<eb5b> <eb5b> <eb5b>

<ec9f> <ecf1> <ec9f>

<ed40> <ed7e> <ed40>

<ed80> <ed96> <ed80>

endbfrange

3 usefont

1 beginbfrange

<f000> <f0ff> <00>

endbfrange

endrearrangedfont

end

%%EndResource

7 COFN

The COFN table is used only for rearranged CID sfnt fonts. It is used to spec-
ify the QuickDraw font name for each component font used in the rearranged
font. The COFN table consists of a Header followed by COFN Data, as shown
in Figure 7. COFN Data contains one COFN Name Record for each Quick-
Draw style, as shown in Table 15.
14 CID-Keyed sfnt Font File Format for the Macintosh (12 Feb 97)

Figure 7 COFN Table Layout

Table 13 shows the format of the COFN Header table.

Table 13 COFN Header Table

Type Field

Fixed version (0x00010000)

uint16 entryCount

uint16 offsets[entryCount+1]

The version field should be set to 1.0 (0x00010000).

entryCount is equal to the number of component fonts used in the rearranged
font, and the offsets array contains offsets from the beginning of the COFN
table to each COFNNameRecord entry in the COFNData table. The format of
the COFNData table is shown in Table 14.

Table 14 COFNData Table

Type Field

COFNNameRecord nameRecord[<variable>]

A COFNNameRecord entry has a variable length which can be calculated by
subtracting the offset for the chosen entry from the offset for the next entry.
For this reason, the values in the offsets array must be sorted in increasing
order, and one additional offsets entry is required.

The format of each nameRecord entry is shown in Table 15.

Table 15 NameRecord Table

Type Field

uint8 styleBits

uint8 PString[<variable>]

COFN Header

COFN Data
7 COFN 15

styleBits is the QuickDraw style bits, which is used with the QuickDraw font
name to access the QuickDraw font.

PString is the QuickDraw font name of the component font in the Pascal
string format (one byte for the string length, followed by the string).

8 COSP

The COSP table defines the code space of a rearranged font, and is required
for, and used only, with rearrranged fonts. The code space defines the num-
bering of the virtual glyph index assigned to each code point of the rear-
ranged font. For a definition of the code space, refer to Adobe Technical Note
#5014, “Adobe CMap and CIDFont Files Specification.”

The COSP table consists of a Header and one or more entries as shown in
Figure 8.

Figure 8 COSP Table Layout

The COSP Header format is shown in Table 16.

Table 16 COSP Table Header

Type Field

Fixed version

uint16 flags

uint16 entryCount

COSPEntry entry[entryCount]

The version field should be set to 1.0 (0x00010000).

The flags field is reserved for future use, and should be set to 0.

entryCount is the number of entries in the table.

The format for each entry is shown in Table 17.

COSP Header

COSP Table
Entries
16 CID-Keyed sfnt Font File Format for the Macintosh (12 Feb 97)

Table 17 COSP Entry Table Element

Type Field

uint16 numBytes

uint16 firstCode

uint16 lastCode

Each entry represents one code space range.

numBytes is the number of bytes of a character code in the code space range
represented by this entry. The value of numBytes is either 1 or 2.

firstCode is the first character code in the range.

lastCode is the last character code in this range.

If numBytes is 1, the single byte code is placed in the lower byte of firstCode
and lastCode. The upper byte must be zero. The entries must be sorted into
increasing character code order.

A glyph index is assigned to each character code defined in the code space, in
increasing order. The glyph index 0 is assigned to the first character code in
the range, 1 is assigned to the next, and so on. The glyph indices defined in
this way are used in the cmap table of the rearranged font.

For example, if the COSP table elements are as follows:

numBytes first last

1 20 7F
2 8120 9FFC
. . .

Then the corresponding cmap table would look like:

char code glyph index

20 0
21 1
.
7F 95
8120 96
8121 97
.
81FC 315
8 COSP 17

8220 316
8221 317
.

Note The total number of glyph indices defined by the COSP table must be speci-
fied in the CIDCount field in the CID table of a rearranged CID sfnt font.

9 FNAM

The FNAM table provides Macintosh QuickDraw compatibility for CID sfnt
fonts.

The TrueType font format introduced sfnt resources to the QuickDraw graph-
ics model, but retained FOND resources as a means of access. QuickDraw
accesses all fonts through FOND resources. These resources were originally
designed to unite a family of NFNT bitmaps, each containing up to 256
glyphs. A typical QuickDraw rasterization request includes a FOND resource
id, an 8-bit character code, a QuickDraw style (bold, italic, etc.), and a
desired size. The size and QuickDraw style are used to access a Font Associ-
ation Table within the FOND and retrieve the NFNT id of the bitmap to be
displayed.

Figure 9 shows the Font Association Table in a Macintosh FOND resource,
with the fields for Size, Style, and Id. There is one such entry for each Quick-
Draw style associated with the font. A Size value of zero (the units are points)
indicates that the Id is for an sfnt rather than for an NFNT resource.

Figure 9 FOND Font Association Table

ATM also accesses sfnt resources under the QuickDraw graphics model via
FOND resources. As with TrueType fonts, ATM rasterizer retrieves the sfnt Id
from the Font Association Table entry with the appropriate QuickDraw style
and a Size value of 0. The sfnt id is then used by the Type 1 rasterizer to read
the sfnt resource and rasterize the required glyph.

One or more QuickDraw FOND resources may refer (via the Font Associa-
tion Table) to the same sfnt font. Each FOND is said to represent an encoding
set because access using that FOND will encode a sub-set of the sfnt glyphs.

Size Style Id
18 CID-Keyed sfnt Font File Format for the Macintosh (12 Feb 97)

For example, character code 97 used with a hypothetical GaramondRegular
FOND would select the ‘a’ glyph, while the same character code from the
GaramondExpert FOND would select the ‘small capital A’ glyph.

The FNAM table is used to select one of the available sfnt encoding sets. This
depends on the QuickDraw FOND resource being used. CID sfnt fonts use
the cmap table to specify an encoding, unlike Type 1 sfnt fonts which use the
ENCO table.

The layout of the FNAM table, shown in Figure 10, consists of an FNAM
Header, shown in Table 18, followed by an selector table, shown in Table 19.

Figure 10 FNAM Table Layout

Table 18 FNAM Header Table

Type Field

Fixed version

uint16 encSetCount

uint16 offsets[EncSetCount + 1]

The version field should be set to 1.0 (0x00010000).

encSetCount is the number of encoding sets in the given font. The minimum
encSetCount is 1.

The offsets array contains offsets from the beginning of the FNAM table to
the first selector of each encoding set. The offsets must be numerically
increasing and, for CID-keyed fonts, each selector matches the language ID
of the cmap subtable. The number of selectors for each encoding set is deter-
mined by inspecting the next offset in the array. One additional entry is
required so that the number of selectors for the last encoding set may be
determined.

FNAM Header

Selector
Table
9 FNAM 19

Table 19 Selector Table

Type Field

Selector selector[<variable>]

Each selector element in the array has the following form:

Table 20 Selector Element

Type Field

uint8 style

PascalStr name[<variable>]

The style field contains the QuickDraw style bits (described in Inside
Macintosh – Text).

The name field contains the FOND name.

This table is also used to access NFNT bitmaps from QuickDraw GX.

10 HFMX

The HFMX table specifies font-wide metrics for the font when it is being set
horizontally.

Table 21 HFMX Table

Type Field

Fixed version

FWord ascent

FWord descent

FWord lineGap

int16 caretSlopeRise

int16 caretSlopeRun

FWord caretOffset

The version field should be set to 1.0 (0x00010000).

The metric ascent is the y-value of the top of the em space in which the char-
acter is drawn. (Adobe uses a value of 880 character space units.)
20 CID-Keyed sfnt Font File Format for the Macintosh (12 Feb 97)

The metric descent is the y-value of the bottom of the em space. (Adobe uses
a value of –120. While these values are not required, fonts with values that
conform are more likely to align correctly when the fonts are used in horizon-
tal writing mode.)

The metric lineGap is the amount of leading to add between successive lines
of text. This value is set to 1/12 em, which is 1000÷12 = 83 FUnits for Adobe-
produced fonts (this value only used in the Macintosh system).

caretSlopeRise, caretSlopeRun, and caretOffset specify the orientation and
offset of the editing caret for use with this font. A caretSlopeRise of 1 with a
caretSlopeRun of 0 gives the standard vertical caret. caretOffset specifies a
horizontal adjustment, in FUnits, of the caret so that it appears optically cen-
tered between adjoining glyphs. The values of caretSlopeRise and
caretSlopeRun only need to express the correct ratio, rather than specific
measurements. Figure 11 illustrates the relationship between these parame-
ters.

Note Most CID-keyed sfnt fonts for CJK languages are likely to have a vertical
caret.

Figure 11 Caret Parameters

11 VFMX

The VFMX table specifies line and glyph metrics for font when it is being set
vertically. This table consists of two parts: the VFMXHeader and the VFMX
Lookup Table; as shown in Figure 12.

CaretOffset

Adjusted
Caret
Position

Origin

CaretSlopeRise

CaretSlopeRun
11 VFMX 21

Figure 12 VFMX Table Layout

The VFMXHeader has the following format:

Table 22 VFMX Header Table

Type Field

Fixed version

int16 flags

uint16 nMasters

int16 before

int16 after

int16 caretSlopeRise

int16 caretSlopeRun

int16 caretOffset

VFMXData defaultEntry

The version field should be set to 2.0 (0x00020000).

The flags field is reserved for future use, and should be set to 0.

The nMasters field should be set to a value of 1 for non–multiple master
fonts.

The before and after fields are in FUnits and specify the space to the right and
left of the vertical line being set.

caretSlopeRise, caretSlopeRun, and caretOffset specify the orientation and
offset of the editing caret for use with this font. A caretSlopeRise of 0 along
with a caretSlopeRun of 1 would give a horizontal caret. caretOffset specifies
a horizontal adjustment, in FUnits, of the caret so that it appears optically
centered between adjoining glyphs.

The format for the defaultEntry is shown in Table 23. This format is also used
for Lookup Data for formats 0, 2, 6, and 8; as well as for the optional subtable
(shown in Figure 13) for Lookup format 4.

VFMX Header

VFMX Lookup
Table
22 CID-Keyed sfnt Font File Format for the Macintosh (12 Feb 97)

Note Formats 0, 2, 4, 6, and 8 are supported as documented in Apple’s QuickDraw
GX Font Formats. However, only formats 2 and 4 are used for CID sfnt fonts.

Table 23 VFMX Data Entry

Type Field

int16 verticalAdvance

int16 xOffsetToVOrigin

int16 yOffsetToVOrigin

verticalAdvance specifies the vertical advance of the glyph in the vertical
writing mode. xOffsetToVOrigin and yOffsetToVOrigin specify the offset from
the origin of the glyph in the horizontal writing mode to the origin of the
glyph in the vertical writing mode. These metrics values apply to all glyphs
looked up in the segment. All values are specified in FUnits.

The VFMX Lookup Table, which follows the VFMX Header, consists of three
parts: a Lookup Table header, a table of segments, and optional subtables.
The layout is shown in Figure 13.

Figure 13 VFMX Lookup Table Layout

The VFMX Lookup Table Header format is described in Table 28 in
Appendix D.

The VFMX Lookup Table Segments consist of two parts. The first part of the
segment depends on the Lookup Table format. For example, for format 2, the
table contents are shown in Table 31 in Appendix D.

The second part of the segment is the Lookup data. For format 4, the format
is shown in Table 24. For formats 0, 2, 6, and 8, the VFMX Data Entry is
embedded in the second part of the segment rather than using the optional
subtable.

VFMX Lookup
Table Header

VFMX Lookup
Table Segments

Optional Subtables
11 VFMX 23

Table 24 VFMX Lookup Data for Format 4

Type Field

uint8 flags

int24 offsetToSubTable

The flags field is defined as shown in Table 25.

Table 25 flags Values for the VFMX Lookup Data Table

Name Value

ONE_ENTRY_IN_SUBTABLE 0x80

The flags field may have a flag ONE_ENTRY_IN_SUBTABLE (0x80) set to
indicate that there is only one entry in the subtable. The other bits are
reserved for future use, and should be set to zero.

The offsetToSubTable field contains the offset to the subtable, which is shown
in Table 26.

Table 26 VFMX SubTable

Type Field

VFMXDataEntry VFMXSubTableEntry[<variable>]

The number of entries contained in VFMXSubTableEntry for a Lookup sege-
ment depends on the value of the flags bit. Each Lookup data has an offset
from the start of the Lookup table to the subtable which contains the metrics
information.

12 QuickDraw and Rearranged Font Compatibility Issues

This section explains how encodings are selected in QuickDraw, and how
rearranged CID-keyed fonts are supported by the CID sfnt font format.

12.1 How Encodings are Selected in QuickDraw Compatibility Mode

For QuickDraw compatibility, the FNAM table is used to map a QuickDraw
font name to a cmap subtable for both the rasterizing and printing of a
CIDFont. Unlike the Roman Type 1 GX format, the ENCO table is not used
and is not included in a CID sfnt font.

The mechanism for selecting a cmap file is shown in Figure 14.
24 CID-Keyed sfnt Font File Format for the Macintosh (12 Feb 97)

Figure 14 cmap Selection in QuickDraw Mode

First, the sfnt ID in the Font Association Table is used to select the correct
sfnt resource. Second, the correct FNAM table index is found in that sfnt by
string matching the QuickDraw font name. Third, that index is used as the
language ID to select the cmap subtable.

The CID sfnt font should have one cmap subtable for each FNAM table entry,
other than those selected by QuickDraw GX. Those cmap subtables should
have the platform ID set to GXCustomPlatform (=5), the script ID set to
gxCustom816BitScript (=2), and language ID set to the index (zero based) to
the corresponding FNAM table entry.

12.2 Rearranged CID sfnt Fonts

A rearranged CID font file references a template font and one or more com-
ponent fonts. This indirection provides an ability to go from the character
codes specified in the cmap table of the rearranged font to the glyph index in
the component font.

Each component font must exist as a CID sfnt font or a Type 1 sfnt font. The
component font is accessed by looking up its QuickDraw font name in the
COFN table, using the same index used to access the PostScript font name in
the component font list in the CID table as shown in Figure 15. This yields the
QuickDraw FOND resource font name of the component font and the associ-
ated style bits.

CID

QD Font 1

QD Font 2

QD Font 3

subtable 1

subtable 2

subtable 3

FNAM Table

cmap Table

find FNAM
index by

string
matching

select sfnt by sfnt ID

 the index into
FNAM table
 is used as

language ID
to select

cmap subtable

sfnt

FOND "QD Font 1"

Font Association Table:
sfnt ID

style bits 1

style bits 2

style bits 3

➀
➁

➂

12 QuickDraw and Rearranged Font Compatibility Issues 25

The rest of the process is the same as that described in section 12.1. The name
and style bits are then used in a system call to locate the correct FOND
resource. The sfnt ID in the Font Association Table is used to select the cor-
rect sfnt resource, and the correct FNAM table index is found in that sfnt by
string matching the QuickDraw font name. Lastly, that index is used as the
language ID to select the cmap subtable (the other arguments, the platform
and script ID, are constants for this operation).

Figure 15 Accessing Component Fonts from a CID-keyed Rearranged Font

CID

COFN Table

QD Font 1

QD Font 2

QD Font 3

style bits 1

style bits 2

style bits 3

/NewFont
[/Font1
 /Font2
 /Font3
]beginrearrangedfont
. . .

sfnt

Rearranged CID Font CID sfnt Font

QD font name
selected using

index of the
component

rearranged font

system
call to

get FOND
using the
QD font

name

CID

QD Font 1

QD Font 2

QD Font 3

subtable 1

subtable 2

subtable 3

FNAM Table

cmap Table

find
FNAM

index by
string

matching

select sfnt by sfnt ID

 the index into
FNAM table
 is used as

language ID
to select

cmap subtable

sfnt

FOND "QD Font 1"

Font Association Table:
sfnt ID

style bits 1

style bits 2

style bits 3

➀

➁

➂

➃

➄

26 CID-Keyed sfnt Font File Format for the Macintosh (12 Feb 97)

Appendix A
sfnt Data Types
The following data types are used in sfnt fonts:

Data Type Description

uint8 8-bit unsigned integer

int8 8-bit signed integer

uint16 16-bit unsigned integer

int16 16-bit signed integer

uint24 24-bit unsigned integer

int32 32-bit signed integer

Fixed 16.16-bit signed fixed-point number

FUnit Smallest measurable distance in the em space (16-bit
signed integer)

FWord 16-bit signed integer that describes a quantity in FUnits

PascalStr Array of 8-bit unsigned integers whose first element
specifies the number of succeeding elements.
27

28 Appendix A sfnt Data Types (12 Feb 97)

Appendix B
Bibliography
Apple

“The TrueType Font Format Specification, Version 1.0”. Apple Computer,
1990; APDA M0825LL/A.

Describes the concept and implementation of TrueType sfnt fonts.

“QuickDraw GX Font Formats: The TrueType Font Format Specification”
(Developer Press, R0601LL/A), Apple Computer, 1993/4.

Describes the typographic capabilities available with sfnt fonts, along
with complete technical specifications for the tables required to support
those features.

Inside Macintosh – QuickDraw GX Typography. Addison Wesley, 1994.

Contains an overview of typographic concepts, programming examples,
and programmer’s reference material for QuickDraw GX.

Inside Macintosh – Text. Chapter 4, Font Manager. Addison Wesley, 1993;
ISBN 0-201-63298-5.

Complete information on the QuickDraw Font Manager, including how
text is scaled and displayed. Also a section on the formats of the FOND
and sfnt resources.

The Type 1 GX Font Format, Version 1.0. Included in the Apple Developers
CD-ROM.

This document described the original sfnt format for Type 1 Roman (sin-
gle-byte) fonts to be used in the Apple GX system.

Adobe

All of the following documents can be found on Adobe’s FTP and WWW
servers at the following addresses:
29

http://www.adobe.com/supportservice/devrelations/devtechnotes.html

ftp://ftp.adobe.com/pub/adobe/DeveloperSupport/TechNotes/

Adobe Type 1 Font Format. Addison Wesley, 1991; ISBN 0-201-57044-0.

Specification of the Type 1 font format. This document describes the plat-
form-independent form of the format; formats for Macintosh and Windows
host-based binary fonts are described in Technical Note #5040, “Support-
ing Downloadable PostScript Fonts.”

Technical Note #0091: “Macintosh FOND Resource.”

Describes the layout and use of Macintosh FOND resources, with exam-
ples of how file names of PostScript Type 1 fonts are derived.

Technical Note #5014: “Adobe CMap and CIDFont Files Specification.”

Specification and tutorials on the CID-keyed font technology which is used
for multi-byte encodings for PostScript Type 1 fonts.

Technical Note #5015: “The Type 1 Font Format Supplement.”
This document contains all updates to the Type 1 format, including the
specification of the multiple master font format. This document does not
include the CID-keyed format extensions.

Technical Note #5040: “Supporting Downloadable PostScript Fonts.”
Describes how Type 1 fonts have traditionally been packaged for use in
the Macintosh and Windows environments — specifically, the use of POST
resources for Macintosh fonts and the PFB compressed binary format for
Windows fonts.

Technical Note #5087: “Multiple Master Font Programs for the Macintosh.”
The BLND resource table information described in 5087 is the same as the
current document; However, it also describes additional information on
FOND resources for multiple master fonts, axis label information, and
multiple master font naming conventions.

Technical Note #5088 “Font Naming Issues.”
In addition to a discussion of general font name issues, this document
explains the naming conventions for multiple master fonts.

Technical Note #5092: “CID-Keyed Font Technology Overview.”
An overview of the nature and benefits of the CID-keyed font technology.

Technical Note #5213, “PostScript Language Extensions for CID-Keyed
Fonts.”
30 Appendix B Bibliography (12 Feb 97)

This document specifies additional CIDFont types and FMap types, as
well as related extensions for supporting CID-keyed fonts in version 2015
of the PostScript interpreter.
 31

32 Appendix B Bibliography (12 Feb 97)

Appendix C
Glossary
AFM file: Adobe Font Metrics File. An ASCII file containing glyph widths,
bounding boxes, kerning data, and font-wide information.

ATM: Adobe Type Manager Software; a font rasterizer for Type 1 font pro-
grams.

caret: A bar that is perpendicular to, or at a slight angle from perpendicular,
the writing direction that marks the point at which text is to be inserted or
deleted.

character: A symbol that represents a sound, syllable, or notion used in a
writing system; a member of a set of elements used for the organization,
control, or represenation of data.

CID-keyed font: A file organization for multi-byte Type 1 fonts; glyphs are
accessed by Character ID (CID) instead of by name lookup.

design coordinate: User-space coordinates for multiple master fonts; used
for user interfaces and font names, and generally in the range from 0 to
1000.

em-square: In typography, the em space is the square of the point size. As
related to glyph definitions, the space in which glyphs are “drawn” using
Type 1 operators. Typically, 1000 x 1000 units for a Type 1 font.

glyph: A recognizable abstract graphic symbol which is independent of any
specific design (i.e. Typeface design). A glyph is the final presentation
form of one or more characters. For example, f and i are both characters
and glyphs; the fi ligature is only a glyph.

glyph image: A particular image of a glyph; for example, a Garamond fi lig-
ature.

FOND: A Macintosh resource; a data structure containing font metrics,
encoding, and font family information.

FONT: An early type of Macintosh font data resource used for bitmap fonts.

font: an implementation of a typeface. Traditionally a single point size when
the implementation was in metal or film; in the more flexible digital
medium a font may be scalable to any size.

FUnits: The smallest measurable unit in a TrueType glyph’s em-square.
33

kerning: Fine adjustments made to the inter-glyph spacing specified in the
font.

NFNT: A Macintosh resource containing one or more bitmap screenfonts.

optical size: The design or generation of glyphs that are optically correct for
the size at which the font is being imaged. Also, an optional axis of a
multiple master font.

rasterizer: Software that converts outline font glyph descriptions into a
bitmap for imaging on a raster device.

typeface: A design for set of characters, numerals, and symbols based on a
consistent design theme. For example, Bodoni Bold.

units-per-em: The number of relative units in an em-square.
34 Appendix C Glossary (12 Feb 97)

Appendix D: Binary Search
and Lookup Table Formats
This appendix contains information that is specified in the Apple GX Font
Format specification, but which is reproduced here for the convenience of the
reader, since a number of CID-specific tables refer to those tables.

This section describes two table components: binary searching tables and the
lookup tables. Binary search tables contain data that assist in doing binary
searches for information in the table that it resides in. Lookup tables map
glyph indexes to information without context.

Binary Searching Tables

To minimize the time needed for text processing, many of the font tables con-
tain information that aids the process of searching for the entry associated
with a particular glyph index. This information is contained in a BinSrch-
Header structure; its format is given in Table 27.

Table 27 Binary Search Header Format

Type Name

uint16 unitSize

uint16 nUnits

uint16 searchRange

uint16 entrySelector

uint16 rangeshift

unitSize is the size of the lookup unit for this search, in bytes.

nUnits is the number of units of the preceding size to be searched.

searchRange is the value of unitSize times the largest power of 2 that is less
than or equal to the value of nUnits.

entrySelector is the log base 2 of the largest power of 2 that is less than or
equal to the value of nUnits.
35

rangeShift is the value of unitSize times the difference of the value of nUnits
minus the largest power of 2 less than or equal to the value of nUnits.

To guarantee that a binary search terminates, one or more special “end of
search table” values must be included at the end of the data to be searched.
The number of termination values that need to be included is table-specific.
The value 0xFFFF specifies binary search termination. The presence of this
value helps to optimize search performance, with a minimal cost of extra
space in the font table. The binary search header is often used in lookup
tables.

Lookup Tables

Lookup tables provide a method for accessing information related to a spe-
cific glyph index. Some lookup tables do simple array-type lookup. Others
involve groupings, allowing you to treat many different glyph indexes in the
same way (that is, to look up the same information about them). The top-level
description of a Lookup table contains a format number and a format-specific
header. The format of the Lookup Table header is given in Table 28.

Table 28 Lookup Table Header Format

Type Name

uint16 format

variable fsHeader

The value of format is the format number (0, 2, 4, 6, or 8) of this Lookup
table.

The fsHeader is the format-specific header (each of which is described in the
following sections), followed by the actual lookup data. The details of the
fsHeader structure are given with the different formats.

The result of a lookup is referred to in the following descriptions as a lookup
value. A lookup value is interpreted differently for different types of tables.

There are five formats of Lookup tables are shown in Table 29:

Table 29 Lookup Table Formats

Format Description

0 Simple array format. The lookup data is an array of lookup val-
ues, indexed by the glyph index.

2 Segment single format. Each non-overlapping segment has a
single lookup value that applies to all glyhphs in the segment. A
segment is defined as a contiguous range of glyph indexes.
36 Appendix D: Binary Search and Lookup Table Formats (12 Feb 97)

4 Segment array format. A segment mapping is performed (as
with format 2), but instead of a single lookup value for all the
glyphs in the segment, each glyph in the segment gets its own
separate lookup value.

6 Single Table Format. The lookup data is a sorted list of <glyph
index, lookup value> pairs.

8 Trimmed array format. The lookup data is a simple trimmed
array indexed by glyph index.

Simple Array Format 0 Lookup Table

The fsHeader field of a format 0 lookup table presents an array of lookup val-
ues, indexed by glyph index. What these values represent depends on the font
table for which the lookup table is used.

Segment Single Format 2 Lookup Table

The fsHeader field of a format 2 lookup table divides some portion of the
glyph indexes into contiguous ranges or segments. The format of a segment
single format 2 lookup table is given in Table 30.

Table 30 Segment Single Format 2 Lookup Table Format

Type Name

BinSrchHeader binSrchHeader

LookupSegment segments[]

The units for this binary search are of type LookupSegment and always have
a minimum length of 6.

segments are the actual segments. These must already be sorted, according to
the first word in each one (the last glyph in each segment).

The format of a format 2 segment entry is given in Table 31.

Table 31 Format 2 lookupSegment Format

Type Name

uint16 lastGlyph

uint16 firstGlyph

variable value

lastGlyph is the last glyph index in this segment.
 37

firstGlyph is the first glyph index in this segment.

value is the lookup value.

For a format 2 lookup table, the value is applied uniformly to all glyphs in the
segment.

Segment Array Format 4 Lookup Tables

The fsHeader field of a format 4 lookup table divides some portion of the
glyph indexes into contiguous ranges or segments. The format of a segment
array format 4 lookup table is given in Table 32.

Table 32 Segment Array Format 4 Lookup Table Format

Type Name

BinSrchHeader binSrchHeader

LookupSegment segments[]

binSrchHeader has units for this binary search type of type LookupSegment,
and must always have a minimum length of 6.

segments is the actual segments. These must already be sorted according to
the first word in each one (the last glyph in each segment).

The format of a format 4 LookupSegment is given in Table 33.

Table 33 Format 4 LookupSegment Format

Type Name

uint16 lastGlyph

uint16 firstGlyph

variable value

lastGlyph is the last glyph index in this segment.

firstGlyph is the first glyph index in this segment.

value is the lookup values.

For a format 4 lookup table, the lookup values can be interpreted in several
ways. Sometimes they are 16-bit offsets from the start of the table to the data.
Other times they are the actual data. Specific interpretations are described in
the sections that describe tables that use lookup tables.
38 Appendix D: Binary Search and Lookup Table Formats (12 Feb 97)

Single Table Format 6 Lookup Table

The fsHeader field of a format 6 lookup table stores the lookup data as a
sorted list of pairs of a glyph index and its lookup result. The format of a
single table format 6 lookup table is shown in Table 34.

Table 34 Single Table Format 6 Lookup Table Format

Type Name

BinSrchHeader binSrchHeader

LookupSingle entries[]

The units for this binary search are of type LookupSingle and always have a
minimum length of 4.

entries[] is the actual entries, sorted by glyph index.

The format of a format 6 LookupSingle is given in Table 35.

Table 35 Format 6 lookupSingle Format

Type Name

uint16 glyph

variable value

glyph is the glyph index.

value is the lookup value.

Trimmed Array Format 8 Lookup Table

The fsHeader field of a format 8 lookup table stores the lookup data as a
simple trimmed array indexed by glyph index. The format of a trimmed array
format 8 lookup table is given in Table 36.

Table 36 Trimmed Array Format 8 Lookup Table Format

Type Name

uint16 firstGlyph

uint16 glyphCount

variable valueArray[]

firstGlyph is the first glyph index in the trimmed array.
 39

glyphCount is the total number of glyphs (equivalent to the last glyph minus
the value of firstGlyph plus 1).

valueArray[] is the lookup values indexed by the glyph index minus the value
of firstGlyph.
40 Appendix D: Binary Search and Lookup Table Formats (12 Feb 97)

	CID-Keyed sfnt Font�File�Format for�the�Macintosh
	1 Introduction
	1.1 Purpose of this Document
	1.2 Conventions Used in this Document

	2 The CID sfnt Format
	2.1 Compatibility
	2.2 Glyph Transformations

	3 CID sfnt Font Format Overview
	3.1 Guidelines for Version Checking
	3.2 Overview of CID sfnt Tables

	4 ALMX
	5 BBOX
	6 CID
	6.1 CID Table for a Rearranged CID Font

	7 COFN
	8 COSP
	9 FNAM
	10 HFMX
	11 VFMX
	12 QuickDraw and Rearranged Font Compatibility Iss...
	12.1 How Encodings are Selected in QuickDraw Compa...
	12.2 Rearranged CID sfnt Fonts

	Appendix A sfnt Data Types
	Appendix B Bibliography
	Appendix C Glossary
	Appendix D: Binary Search and Lookup�Table�Formats...

