
This document is a tutorial and “best practices” document for font developers and sophisticated end users
who develop CMap resources intended to be used with CID-keyed fonts, or used for building OpenType/CFF
fonts. Some familiarity with CID-keyed font technology is assumed. Tools, written in Perl, that simplify CMap
resource development are also provided in this document, in the text itself or as an attachment. The techniques,
principles, and tools that are presented in this document can be applied to the development of CMap resources
for any character collection.

Because this document is designed to be a tutorial, it provides practical advice and helpful tips for developing
CMap resources. A complete description and treatment of CMap resources, to include the full syntactic
specification, is available in Adobe Technical Note #5014, entitled Adobe CMap and CIDFont Files Specification.*
A complete description of the various CJK character collections and their associated CMap resources can be
found in Adobe Technical Note #5094, entitled Adobe CJKV Character Collections and CMaps for CID-Keyed
Fonts.† Adobe’s public CMap resources are available as part of the CMap Resources open source project that is
hosted at Open @ Adobe.‡

The software provided as part of this document, written in Perl, comes with no warranty, written or expressed.
Adobe assumes no liability for data lost as a result of using them. Also note that Perl is required to execute these
tools (Perl is freely available for a variety of platforms, and is bundled with some, such as Mac OS X).

1.1	 Introduction

A CMap resource is used to specify, in a unidirectional manner, mappings from character codes, such as Unicode,
to CIDs (Character IDs), and are designed to be used with CID-keyed fonts, such as CIDFont resources.

If you are unfamiliar with the structure and syntax of a CMap resource, this section provides a short example.
CMap resource syntax is simply a specialized set of PostScript language commands. For information on
PostScript language syntax, please refer to PostScript Language Reference, Third Edition (Addison-Wesley,
1999).§

The following is a minimal—but fully-functional—Unicode (UTF-32 encoding form) CMap resource named
UniJIS-UTF32-H. It maps a single Unicode character, U+4E00, from its UTF-32 encoding form to its appropriate
Adobe-Japan1-6 CID, specifically CID+1200.

%!PS-Adobe-3.0 Resource-CMap
%%DocumentNeededResources: ProcSet (CIDInit)
%%IncludeResource: ProcSet (CIDInit)
%%BeginResource: CMap (UniJIS-UTF32-H)
%%Title: (UniJIS-UTF32-H Adobe Japan1 6)
%%Version: 1.000
%%Copyright: ---
%%Copyright: Copyright 1990-2012 Adobe Systems Incorporated.
%%Copyright: All rights reserved.

*  http://www.adobe.com/devnet/font/pdfs/5014.CIDFont_Spec.pdf
†  http://www.adobe.com/devnet/font/pdfs/5094.CJK_CID.pdf
‡  http://sourceforge.net/adobe/cmap/
§  http://wwwimages.adobe.com/www.adobe.com/content/dam/Adobe/en/devnet/postscript/pdfs/PLRM.pdf

Developing CMap Resources for CID-Keyed Fonts

bcAdobe Enterprise & Developer Support
Adobe Technical Note #5099

2Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

%%Copyright:
%%Copyright: Redistribution and use in source and binary forms, with or
%%Copyright: without modification, are permitted provided that the
%%Copyright: following conditions are met:
%%Copyright:
%%Copyright: Redistributions of source code must retain the above
%%Copyright: copyright notice, this list of conditions and the following
%%Copyright: disclaimer.
%%Copyright:
%%Copyright: Redistributions in binary form must reproduce the above
%%Copyright: copyright notice, this list of conditions and the following
%%Copyright: disclaimer in the documentation and/or other materials
%%Copyright: provided with the distribution.
%%Copyright:
%%Copyright: Neither the name of Adobe Systems Incorporated nor the names
%%Copyright: of its contributors may be used to endorse or promote
%%Copyright: products derived from this software without specific prior
%%Copyright: written permission.
%%Copyright:
%%Copyright: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
%%Copyright: CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
%%Copyright: INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
%%Copyright: MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
%%Copyright: DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
%%Copyright: CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
%%Copyright: SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
%%Copyright: NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
%%Copyright: LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
%%Copyright: HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
%%Copyright: CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
%%Copyright: OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
%%Copyright: SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
%%Copyright: ---
%%EndComments

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/CIDSystemInfo 3 dict dup begin
 /Registry (Adobe) def
 /Ordering (Japan1) def
 /Supplement 6 def
end def

/CMapName /UniJIS-UTF32-H def
/CMapVersion 1.000 def
/CMapType 1 def

/XUID [1 10 25539] def

/WMode 0 def

1 begincodespacerange
 <00000000> <0010FFFF>
endcodespacerange

1 beginnotdefrange
<00000000> <0000001f> 1
endnotdefrange

100 begincidchar
<00004e00> 1200
endcidchar

3Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

endcmap
CMapName currentdict /CMap defineresource pop
end
end

%%EndResource
%%EOF

You will discover that much of a CMap resource’s structure is static in that it does not change from CMap
resource to CMap resource.

The sections that follow step you through each section of a CMap resource, using the above minimal CMap
resource as the example. Special attention is given to those sections that specify code space ranges and the actual
character code to CID mappings.

1.2	 The CMap Resource Header

The CMap resource header is simply a series of PostScript comments, but their content is important, because it
is parsed by some software.

%!PS-Adobe-3.0 Resource-CMap
%%DocumentNeededResources: ProcSet (CIDInit)
%%IncludeResource: ProcSet (CIDInit)
%%BeginResource: CMap (UniJIS-UTF32-H)
%%Title: (UniJIS-UTF32-H Adobe Japan1 6)
%%Version: 1.000
%%EndComments

The first three lines are static. The first is the typical comment line ('percent bang') that indicates a PostScript
resource. The next two lines indicate that the CID procedure set (called ProcSet) resource is required, and is in
a resource called CIDInit.

%!PS-Adobe-3.0 Resource-CMap
%%DocumentNeededResources: ProcSet (CIDInit)
%%IncludeResource: ProcSet (CIDInit)

The next line specifies the CMap resource name in parentheses:
%%BeginResource: CMap (UniJIS-UTF32-H)

The following line specifies the CMap resource name and the /Registry, /Ordering, and /Supplement of the
character collection on which it is based, again in parentheses:

%%Title: (UniJIS-UTF32-H Adobe Japan1 6)

The following line specifies the version number of the CMap resource, indicated by a real number:
%%Version: 1.000

Note the lack of parentheses, because only PostScript-language strings are delimited by parentheses.

CMap resources developed by Adobe also include an open-source copyright notice in the header as follows:
%%Copyright: ---
%%Copyright: Copyright 1990-2012 Adobe Systems Incorporated.
%%Copyright: All rights reserved.
%%Copyright:
%%Copyright: Redistribution and use in source and binary forms, with or
%%Copyright: without modification, are permitted provided that the
%%Copyright: following conditions are met:
%%Copyright:
%%Copyright: Redistributions of source code must retain the above
%%Copyright: copyright notice, this list of conditions and the following
%%Copyright: disclaimer.

4Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

%%Copyright:
%%Copyright: Redistributions in binary form must reproduce the above
%%Copyright: copyright notice, this list of conditions and the following
%%Copyright: disclaimer in the documentation and/or other materials
%%Copyright: provided with the distribution.
%%Copyright:
%%Copyright: Neither the name of Adobe Systems Incorporated nor the names
%%Copyright: of its contributors may be used to endorse or promote
%%Copyright: products derived from this software without specific prior
%%Copyright: written permission.
%%Copyright:
%%Copyright: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
%%Copyright: CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
%%Copyright: INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
%%Copyright: MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
%%Copyright: DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
%%Copyright: CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
%%Copyright: SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
%%Copyright: NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
%%Copyright: LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
%%Copyright: HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
%%Copyright: CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
%%Copyright: OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
%%Copyright: SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
%%Copyright: ---

Whether to include similar copyright information, or any copyright information at all, is at the discretion of the
developer of the CMap resource.

The final line of the header simply indicates the end of the CMap resource header.
%%EndComments

Vertical CMap resources use their horizontal counterpart for the majority—and sometimes all—of its mappings,
and thus include extra entries in the header to indicate this external dependency. The following is what the
header of the UniJIS-UTF32-V CMap resource looks like (copyright information is not shown for the sake of
brevity):

%!PS-Adobe-3.0 Resource-CMap
%%DocumentNeededResources: ProcSet (CIDInit)
%%DocumentNeededResources: CMap (UniJIS-UTF32-H)
%%IncludeResource: ProcSet (CIDInit)
%%IncludeResource: CMap (UniJIS-UTF32-H)
%%BeginResource: CMap (UniJIS-UTF32-V)
%%Title: (UniJIS-UTF32-V Adobe Japan1 6)
%%Version: 1.000
%%EndComments

Note the two additional lines, specifically the third and fifth lines from the above CMap resource header:
%%DocumentNeededResources: CMap (UniJIS-UTF32-H)
%%IncludeResource: CMap (UniJIS-UTF32-H)

These lines indicate that this CMap resource depends on the presence and contents of the horizontal CMap
resource, UniJIS-UTF32-H.

1.3	 The CMap Resource Body

The first three lines of the CMap resource body are static for all CMap resources. The purpose of the first line is
to check for the existence of the CID procedure set (ProcSet) as a resource named CIDInit:

/CIDInit /ProcSet findresource begin

5Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

If the result returned from the interpreter is true, then the device is enabled for CID-keyed fonts. This does not
apply to ATM and other non-PostScript implementations.

The following line creates a new dictionary with 12 entries, the purpose of which is to store the dictionary entries
that follow:

12 dict begin

Storing items in a PostScript dictionary makes them subsequently accessible.

The following line indicates the start of the CMap resource dictionary:
begincmap

The following dictionary entry, which uses the usecmap operator, generally appears only in vertical CMap
resources, and indicates that all the mappings from the referenced CMap resource are inherited.

/UniJIS-UTF32-H usecmap

Our example CMap resource did not include this line because it is for horizontal use. The UniJIS-UTF32-V
CMap resource, its vertical counterpart, includes this dictionary entry.

1.3.1	 Compatibility Information

The three-item /CIDSystemInfo dictionary establishes compatibility information for the CMap resource,
specifically the /Registry, /Ordering, and /Supplement values. (These three dictionary entries, sometimes
abbreviated as ROS, can also be referred to using a single string that is a concatenation using a hyphen as a
separator, such as Adobe-Japan1-6.) The same dictionary is also present in CIDFont resources. These entries
must agree with the character collection with which the CMap resource is to function.

/CIDSystemInfo 3 dict dup begin
 /Registry (Adobe) def
 /Ordering (Japan1) def
 /Supplement 6 def
end def

NOTE:	 A matching /Supplement entry is not required for CIDFont and CMap resource compatibility.

The /Supplement value is not enclosed in parentheses, because it is an integer value, not a string. The example
CMap resource is thus compatible with the Adobe-Japan1-6 character collection, but can be used with CIDFont
resources that specify a /Supplement value other than 6.

The following line, the dictionary entry /CMapName, specifies the name of the CMap resource:
/CMapName /UniJIS-UTF32-H def

In this case, the name of the CMap resource is UniJIS-UTF32-H.

The following line, the dictionary entry /CMapVersion, indicates the version number of the CMap resource,
expressed as a real number. This should agree with the value that is specified in the header section (the
%%Version: line).

/CMapVersion 1.000 def

The following line indicates the type of CMap resource:
/CMapType 1 def

This obviously allows the possibility of different CMap resource formats. “ToUnicode” mapping resources, for
example, specify 2 as the /CMapType value.* For the purpose of developing CMap resources as detailed in this
document, please treat this entry as the standard way of specifying the CMap resource type.

*  http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/5411.ToUnicode.pdf

6Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

1.3.2	 /XUID & /UIDOffset Values

Next, there are the /XUID and /UIDOffset dictionary entries. These values are used to cache rendered bitmaps
in VM (virtual memory) or on disk for faster imaging during subsequent rendering requests.

The /XUID array is used by PostScript Level 2 and PostScript 3 for caching purposes. The first element must be
the Font XUID identifier of the developer of the CMap resource, and in the example it is set to 1 (Adobe):

/XUID [1 10 25539] def

If you do not yet have an assigned Font XUID, one can be easily registered with Adobe.* The second and
subsequent elements of the /XUID array are assigned by the developer, to ensure uniqueness, and can signify
any meaning they wish. In the example, the second element designates the resource type, with a value of 10
(Adobe’s convention is to specify 10 for CMap resources, and 11 for CIDFont resources). The third element is
an integer that is unique across Adobe’s CMap resources.

NOTE:	 Due to known implementation limits, we recommend that no more than four elements be specified in /
XUID arrays.

The /UIDOffset value is used to allocate a range of UniqueIDs, and its sole purpose is for backwards compatibility
with PostScript Level 1. Thus, only legacy CMap resources are expected to include a /UIDOffset value.

NOTE:	 Adobe does not recommend specifying a /UIDOffset value in CMap resources.

A /UIDOffset value is not present in the example CMap resource, UniJIS-UTF32-H. One is not necessary. The
following is the /UIDOffset entry for the Adobe-Japan1-6 H CMap resource:

/UIDOffset 280 def

This value simply means that UniqueIDs for the Adobe-Japan1-6 H CMap resource are assigned starting from
an offset of 280 UniqueIDs from a base value that is specified in a CIDFont resource, specifically as the /UIDBase
dictionary value. The H CMap resource consumes only 94 UniqueIDs, but 100 UniqueIDs are assigned for
reasons of convenience (this means that the /UIDOffset value in the next CMap resource should be no lower
than 380). If the /UIDBase value of a CIDFont resource is set to 2200000, then the H CMap resource will begin
allocating UniqueIDs starting from the value 2200280.

1.3.3	 Writing Modes

There are two writing modes in PostScript, indicated by the integers 0 and 1. Writing mode 0 is horizontal,
and writing mode 1 is vertical. These should agree with the last character in the name of the CMap resource,
meaning 0 with -H, and 1 with -V. The following is from the example CMap resource, which is horizontal:

/WMode 0 def

The corresponding vertical CMap resource, UniJIS-UTF32-V, uses the following line instead:
/WMode 1 def

The origin of writing mode 0 is at coordinate 0,0, and the writing direction is from left to right. The origin of
writing mode 1 begins at coordinate 0,0, and the writing direction is from top to bottom.

NOTE:	 The origin of writing mode 1 at coordinate 0,0 is at a vector of 500,880 from the origin of writing mode 0,
meaning at the top-center of a full-width 1000-unit character.

*  http://partners.adobe.com/public/developer/font/register/xuid_reg.do

7Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

1.3.4	 Code Space Range

The part of the CMap resource that is described in this section specifies the code space range for the encoding
to be supported, and establishes the legal character codes for the subsequent character code to CID mappings.

NOTE:	 It is extremely important to understand that the entire code space range should be specified, and not only
the code space range from which character codes are mapped to CIDs. This is a common error that is made
by developers of CMap resources! Some encodings that have disjoint second-byte ranges, such as Shift-JIS
(Japanese), Big Five (Traditional Chinese), Unified Hangul Code (Korean), or Johab (Korean), are best
expressed as a contiguous block.

You will learn that a rich set of encodings can be specified by a CMap resource. One- to four-byte representations
can be expressed. A current limitation of CID compatibility mode (available in PostScript Version 2014 and
earlier) is that only representations up to two bytes are supported, but native mode (available in PostScript
Version 2015 and later) can handle up to four-byte representations.

Code space ranges are expressed as hexadecimal codes that represent the beginning and ending value of each
byte of a contiguous encoding block. Uppercase hexadecimal digits A through F (as opposed to lowercase
hexadecimal digits a through f) are used—as a convention rather than as a rule—to more easily distinguish
the code space range definition from the character code to CID mappings, but this is not a requirement. The
following is an example code space range definition:

1 begincodespacerange
 <0000> <FFFF>
endcodespacerange

In this case, the code space range is completely two-byte, and is 0x0000 through 0xFFFF (65,536 code points).
This represents the now-deprecated Unicode UCS-2 encoding form.

The integer immediately before the begincodespacerange operator indicates and must agree with the total number
of code space range entries. Furthermore, all code space ranges are required to be in increasing byte-value order.

For today’s OSes and applications, the most important CMap resources are the Unicode ones, which support
the UTF-8, UTF-16, and UTF-32 encoding forms. When developing OpenType/CFF fonts, the most important
CMap resource is the UTF-32 one.

The code space range for UTF-32 CMap resources can be specified by a single entry, as shown below:
1 begincodespacerange
 <00000000> <0010FFFF>
endcodespacerange

Note that the byte order is explicitly big-endian, so it is technically the UTF-32BE encoding form.

The code space range for UTF-16 CMap resources also uses big-endian byte order, and can be specified by the
three entries below:

3 begincodespacerange
 <0000> <D7FF> % BMP
 <D800DC00> <DBFFDFFF> % Surrogates
 <E000> <FFFF> % BMP
endcodespacerange

The UTF-8 encoding form uses 8-bit code units, so there is only one byte order. The code space ranges for UTF-
8 CMap resources are shown below:

8Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

4 begincodespacerange
 <00> <7F>
 <C080> <DFBF>
 <E08080> <EFBFBF>
 <F0808080> <F7BFBFBF>
endcodespacerange

Other code space ranges, for legacy encodings, include the examples that follow. These can be used as study
material, and may be useful for developing other CMap resources. The first example is for two-byte 7-bit ISO-
2022 encoding (applicable to JIS X 0208, JIS X 0212, GB 2312, KS X 1001, and each individual plane of CNS
11643):

1 begincodespacerange
 <2121> <7E7E>
endcodespacerange

This specifies the usual 8,836 code points in a 94×94 matrix.

The next example is for Shift-JIS encoding (JIS X 0201 and JIS X 0208):
4 begincodespacerange
 <00> <80> % JIS X 0201 Latin
 <8140> <9FFC> % JIS X 0208 first two-byte block
 <A0> <DF> % JIS X 0201 Half-width katakana
 <E040> <FCFC> % JIS X 0208 second two-byte block
endcodespacerange

Note how the user-defined range (0xF040 through 0xFCFC) is included as part of the second two-byte block.
Although the second-byte range of Shift-JIS is disjoint (0x40 through 0xFC, but not including 0x7F), it is
expressed here as a contiguous range to simplify the character code to CID mappings that are assigned later in
the CMap resource.

Another example is for EUC-JP encoding (JIS X 0201, JIS X 0208, and JIS X 0212), which makes use of one-,
two-, and three-byte character codes:

4 begincodespacerange
<00> <80> % EUC code set 0 (JIS X 0201 Latin)
<8EA0> <8EDF> % EUC code set 2 (JIS X 0201 half-width katakana)
<8FA1A1> <8FFEFE> % EUC code set 3 (JIS X 0212)
<A1A1> <FEFE> % EUC code set 1 (JIS X 0208)
endcodespacerange

The next example is for EUC-CN (GB 1988 and GB 2312) and EUC-KR (KS X 1003 and KS X 1001) encodings:
2 begincodespacerange
 <00> <80> % EUC code set 0 (GB 1988 or KS X 1003)
 <A1A1> <FEFE> % EUC code set 1 (GB 2312 or KS X 1001)
endcodespacerange

The next example is for EUC-TW encoding (ASCII and CNS 11643):
18 begincodespacerange
 <00> <80> % EUC code set 0 (ASCII)
 <8EA1A1A1> <8EA1FEFE> % EUC code set 2 (Plane 1)
 <8EA2A1A1> <8EA2FEFE> % EUC code set 2 (Plane 2)
 <8EA3A1A1> <8EA3FEFE> % EUC code set 2 (Plane 3)
 <8EA4A1A1> <8EA4FEFE> % EUC code set 2 (Plane 4)
 <8EA5A1A1> <8EA5FEFE> % EUC code set 2 (Plane 5)
 <8EA6A1A1> <8EA6FEFE> % EUC code set 2 (Plane 6)
 <8EA7A1A1> <8EA7FEFE> % EUC code set 2 (Plane 7)
 <8EA8A1A1> <8EA8FEFE> % EUC code set 2 (Plane 8)
 <8EA9A1A1> <8EA9FEFE> % EUC code set 2 (Plane 9)
 <8EAAA1A1> <8EAAFEFE> % EUC code set 2 (Plane 10)
 <8EABA1A1> <8EABFEFE> % EUC code set 2 (Plane 11)
 <8EACA1A1> <8EACFEFE> % EUC code set 2 (Plane 12)
 <8EADA1A1> <8EADFEFE> % EUC code set 2 (Plane 13)

9Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

 <8EAEA1A1> <8EAEFEFE> % EUC code set 2 (Plane 14)
 <8EAFA1A1> <8EAFFEFE> % EUC code set 2 (Plane 15)
 <8EB0A1A1> <8EB0FEFE> % EUC code set 2 (Plane 16)
 <A1A1> <FEFE> % EUC code set 1 (Plane 1)
endcodespacerange

Note how CNS 11643 Plane 1 is (redundantly) encoded in both EUC-TW code sets 1 and 2, and how a mixture
of one-, two-, and four-byte character codes is used. You may be wondering whether it is possible to express the
second through seventeenth entries as the following single entry:

<8EA1A1A1> <8EB0FEFE> % EUC code set 2 (CNS 11643)

The answer is yes and no. If the CMap resource does not specify a /UIDOffset value, then the answer is yes. If
a /UIDOffset value is specified, then the answer is no. The reason is due to the way in which UniqueIDs are
allocated. The least significant byte can have up to 256 values, 0x00 through 0xFF. A single UniqueID can handle
up to 256 character codes. This means that the number of UniqueIDs required for each code space range line is
determined by the number of unique values in the second byte from the right (highlighted in bold above). If any
other byte beyond the second byte is represented by a range, then UniqueID assignment will not work properly.
In the single code space range entry above, one of the bytes beyond the second byte, specifically the second of
the four bytes, ranges from 0xA1 through 0xB0.

The next example is for IBM’s DBCS-Host encoding (applicable for Chinese, Japanese, and Korean):
2 begincodespacerange
 <4040> <4040> % Full-width space character
 <4141> <FEFE> % Two-byte characters
endcodespacerange

Pay careful attention to how the code point for the full-width “space” character, 0x4040, is handled: an code
space range that consists of a single two-byte code point.

The next example is for Big Five encoding (Traditional Chinese, and equivalent to CNS 11643 Planes 1 and 2):
2 begincodespacerange
 <00> <80> % ASCII
 <A140> <FEFE> % Big Five
endcodespacerange

Big Five encoding uses two disjoint two-byte encoding blocks, specifically 0xA140 through 0xFE7E and 0xA1A1
through 0xFEFE, but the code space range specified above joins them by including the intervening encoding
block, meaning 0xA17F through 0xFEA0. This is done to simplify the character code to CID mappings that are
specified later in the CMap resource.

The next example is for Johab encoding, which includes all 11,172 hangul (KS X 1003 and KS X 1001):
4 begincodespacerange
 <00> <80> % KS X 1003
 <8441> <D3FE> % KS X 1001 Hangul
 <D831> <DEFE> % KS X 1001 Symbols
 <E031> <F9FE> % KS X 1001 Hanja
endcodespacerange

The next example is for Unified Hangul Code (UHC) encoding, supported in older versions of Microsoft
Windows for Korean. It supports the same character set as Johab encoding, but its code space range is different:

2 begincodespacerange
 <00> <80> % KS X 1003
 <8141> <FEFE> % KS X 1001 plus 8,822 additional hangul
endcodespacerange

The final example demonstrates that one-byte CMaps resources can also be defined:

10Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

1 begincodespacerange
 <00> <FF> % ASCII or EBCDIC
endcodespacerange

This code space range is applicable for both ASCII- or EBCDIC-style encodings.

The code space range section is not found in vertical CMap resources. Vertical CMap resources instead inherit
the code space range from the appropriate horizontal CMap resource, as specified by the usecmap operator.

It is possible to specify the largest possible code space range, such as the following for 7-bit ISO-2022 encoding,
which is normally set to 0x2121 through 0x7E7E:

1 begincodespacerange
 <0000> <FFFF>
endcodespacerange

This method wastes a significant amount of UniqueIDs (over 150), but more importantly it permits a large
number of character codes outside the valid 7-bit ISO-2022 encoding range. Joining non-contiguous encoding
blocks that share the same first-byte values, such as we saw with Shift-JIS and Big Five encodings, does not waste
any UniqueIDs.

1.3.5	 .Notdef Range

If a special mapping is desired for particular characters or character ranges, such as for the ASCII control
character range, 0x00 through 0x1F, or U+0000 through U+001F in Unicode, a specific CID can be assigned for
this purpose. By default, unmapped character codes are assigned CID+0 (.notdef). This is not always desired
because the width of CID+0 is typically 1000 units (one em), and may also render with a specific glyph. The
following is an example:

1 beginnotdefrange
<00000000> <0000001f> 1
endnotdefrange

In this case, the Unicode (UTF-32) control character range, U+0000 through U+001F, is assigned CID+1, which
represents the glyph for a proportional-width space in the Adobe-CNS1-6, Adobe-GB1-5, Adobe-Japan1-6, and
Adobe-Korea1-2 character collections. The glyph for a half-width space can be assigned for Shift-JIS or EUC-
JP encoding as follows (the specified CID, CID+231, applies only to the Adobe-Japan1-6 character collection):

1 beginnotdefrange
<00> <1f> 231
endnotdefrange

Whether to specify the glyph for a half- or proportional-width space depends on the characteristics of the
CMap resource. For example, the Macintosh CMap resource for Japanese, 90pv-RKSJ-H, uses proportional-
width glyphs for the JIS X 0201 character set, and thus specifies CID+1 (a proportional-width space) for the
control character range as follows:

1 beginnotdefrange
<00> <1f> 1
endnotdefrange

CMap resources that use a half-width ASCII (or equivalent) character set should specify the CID that corresponds
to a half-width space for this section, such as CID+231 for the Adobe-Japan1-6 character collection.

NOTE:	 Some implementations ignore the .notdef range that is specified in a CMap resource.

1.3.6	 Character Code to CID Mapping Basics

This section represents the most important part of the CMap resource because it specifies all of the character
code to CID mappings. The following minimal mapping supports a single character code:

11Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

1 begincidchar
<4e00> 1200
endcidchar

Character codes are expressed in hexadecimal notation, and are enclosed in < > brackets. CIDs are expressed
as decimal integers.

The character code 0x4E00 simply maps to CID+1200. The number that appears before the begincidchar operator
indicates the number of mapping lines. The endcidchar operator terminates a block of mappings. If a CMap
resource specifies more than 100 mappings, they must be segmented into blocks of 100 mapping, as follows:

100 begincidrange
<2121> <217e> 633
<2221> <222e> 727
<223a> <2241> 741
<224a> <2250> 749
<…92 mappings omitted…>
<6021> <607e> 5594
<6121> <617e> 5688
<6221> <627e> 5782
<6321> <637e> 5876
endcidrange

18 begincidrange
<6421> <647e> 5970
<6521> <657e> 6064
<6621> <667e> 6158
<6721> <677e> 6252
<…10 mappings omitted…>
<7221> <727e> 7286
<7321> <737e> 7380
<7421> <7424> 7474
<7425> <7426> 8284
endcidrange

In the above example, the 118 mappings that are specified in the Adobe-Japan1-6 H CMap resource are separated
into a block of 100 followed by a block of 18.

As the two examples above exemplify, there are two types of mappings: single and range.

Single mappings map a single character code to a CID, and are delimited by the begincidchar and endcidchar
operators. The two entries of a single mapping comprise the character code and the CID.

Range mappings map a contiguous range of character codes to a contiguous range of CIDs, and are delimited
by the begincidrange and endcidrange operators. The three entries of a range mapping comprise the starting
character code, the ending character code, and the starting CID. It is possible to represent single mappings as
range mappings, meaning that the starting and ending character codes are identical.

All single mappings are specified first in a CMap resource, followed by all range mappings.

The following range mapping specifies the 94 characters that make up the first row of kanji from the Adobe-
Japan1-6 H CMap resource—this is 7-bit ISO-2022 encoding:

<3021> <307e> 1125

This is equivalent to writing the following single mappings:
<3021> 1125
<3022> 1126
<3023> 1127
<3024> 1128
<…86 mappings omitted…>
<307b> 1215

12Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

<307c> 1216
<307d> 1217
<307e> 1218

but is much more efficient. In principle, if both character code and CID ranges are contiguous, they should be
collapsed into a range mapping. This results in a shorter (smaller) CMap resource, and increases efficiency.

The corresponding 94 character codes in the Adobe-Japan1-6 78-H (JIS C 6226-1978) CMap resource does
not have completely contiguous CIDs, although the character codes are contiguous. The following shows how
the same set of 94 character codes as shown above, specifically 0x3021 through 0x307E, are mapped to their
corresponding Adobe-Japan1-6 CIDs, and use single and range mappings as appropriate:

9 begincidchar
<3021> 1125
<3022> 7633 % JIS C 6226-1978 kanji
<3029> 8266 % JIS C 6226-1978 kanji
<3032> 7961 % JIS C 6226-1978 kanji
<3033> 7330 % JIS C 6226-1978 kanji
<303b> 7634 % JIS C 6226-1978 kanji
<306e> 7635 % JIS C 6226-1978 kanji
<3073> 7636 % JIS C 6226-1978 kanji
<307c> 7637 % JIS C 6226-1978 kanji
endcidchar

7 begincidrange
<3023> <3028> 1127
<302a> <3031> 1134
<3034> <303a> 1144
<303c> <306d> 1152
<306f> <3072> 1203
<3074> <307b> 1208
<307d> <307e> 1217
endcidrange

Note how non-contiguity of CIDs results in significantly more mappings (16 for the 78-H CMap resource,
compared to only one for the H CMap resource). The order of mapping lines must also be in increasing byte-
value order, meaning that the following mapping order is not acceptable, and results in an invalid CMap
resource:

<3121> <317e> 1219
<3021> <307e> 1125

It must instead be as follows:
<3021> <307e> 1125
<3121> <317e> 1219

While the character codes must be in increasing byte-value order, there is no such stipulation for the order of
CIDs.

In some cases, a CMap resource may exist, but contain no character code to CID mapping lines. The vertical
CMap resources for the now-deprecated Adobe-Japan2-0 character collection, Hojo-V and Hojo-EUC-V, are
such examples. Their sole purpose is to specify writing mode 1 (vertical), but no character code to CID mappings
are necessary because all of the character code to CID mappings are inherited from their corresponding
horizontal CMap resources.

1.3.7	 Building Character Code to CID Mappings

The previous section described the basics of character code to CID mappings. This section contains practical
advice about how to build up these mappings from scratch using tables or other sources. Proven tools for
simplifying CMap resource development are also presented. These tools can be used as-is, or customized for
other purposes.

13Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

One must begin with a table that maps each CID to a particular encoding, or to a name that represents a
particular encoding. The following example represents the complete set of 6,355 kanji in JIS X 0208, and the
CIDs are based on the Adobe-Japan1-6 character collection:

1125 3021
1126 3022
1127 3023
1128 3024
<…6,347 contiguous CIDs and character codes omitted…>
7476 7423
7477 7424
8284 7425
8285 7426

The first column represents the CID (in decimal), and the second column represents the corresponding Japanese
7-bit ISO-2022 character code (in hexadecimal). Such a single CID to character code mapping alone is not
very useful in building new CMap resources (because a 7-bit ISO-2022 CMap resource, H, already exists), but
together with other mapping tables, can be used as a powerful development aid.

An example of this power can be demonstrated when trying to build a Unicode or DBCS-Host CMap resource.
The Unicode Consortium provides a number of useful mapping tables for this purpose.* One such table maps
Japanese 7-bit ISO-2022 to Unicode. IBM can also provide similar mappings tables for their DBCS-Host
encoding. Such mapping tables provide the following type of information (Row 0x45 of Japanese DBCS-Host
encoding, which has 190 characters, being the example used below):

4541 306c
4542 4673
4543 3b30
4544 3b4d
<…182 character code mappings omitted…>
45fb 314a
45fc 346f
45fd 364c
45fe 423f

The first column is the DBCS-Host character code (in hexadecimal), and the second column is the Japanese
7-bit ISO-2022 character code (also in hexadecimal). The DBCS-Host encoding range for this excerpt is 0x4541
through 0x45FE. It is important that such mapping tables are sorted in increasing byte-value order.

By leveraging powerful text-processing tools, such as Awk, Perl, Python, or Ruby, one can use tables with
thousands of such mappings, and quickly and easily create character code to CID mappings. Associative arrays
serve as an ideal data structure for loading and retrieving such mapping information. Perl is an excellent
programming language for manipulating CMap resources. It is not only free, and available for numerous
platforms, but is extremely powerful. Its primary strength lies in its regular expressions, associative arrays, and
parsing capabilities. Of course, the same statement also applies to other programming languages.

The following short Perl program is designed to create the raw (aka, not collapsed into range mappings)
character code to CID mappings:

#!/usr/local/bin/perl

$count = 0;
open(CID,"<cid.tbl") || die "Error opening cid.tbl file.\n";
while (defined($line = <CID>)) {
 chop($line);
 ($cid,$code) = split(/\s+/,$line);
 $code =~ tr/A-F/a-f/;
 $table{$code} = $cid;
 $count++;
}

*  http://www.unicode.org/Public/MAPPINGS/

14Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

close(CID);
print STDERR "Processed $count CID mappings...\n";

$count = 0;
while (defined($line = <STDIN>)) {
 chop($line);
 $line =~ tr/A-F/a-f/;
 ($new,$code) = split(/\s+/,$line);
 $cid = $table{$code};
 print STDOUT "<$new> $cid\n";
 $count++;
}
print STDERR "Created $count raw character code to CID mappings.\n";

A file that specifies the CID plus the equivalent Japanese 7-bit ISO-2022 code is first read in by explicitly
opening the file named cid.tbl. The other mapping table in which each line indicates the target encoding plus
the equivalent 7-bit ISO-2022 code is read in as standard input (STDIN). The result, which conforms to CMap
resource syntax, is then written to standard output (STDOUT).

If the character code mapping table has multiple fields (that is, more than two), the following line of code:
($new,$code) = split(/\s+/,$line);

can be replaced with something like:
($new,$code) = (split(/\s+/,$line))[0,4];

to extract only the two desired fields. In the above line of code, the first field at array index 0 (zero) is assigned
to the variable $new, and the fifth field at array index 4 is assigned to the variable $code. Perl arrays, like in C,
begin at index 0 (zero). Other digits can be used to extract specific fields.

When using two appropriate mappings tables with this Perl utility, one can create the following 190 lines of
CMap resource code that map DBCS-Host character codes to Adobe-Japan1-6 CIDs:

<4541> 1200
<4542> 3275
<4543> 2174
<4544> 2203
<…182 mappings omitted…>
<45fb> 1260
<45fc> 1579
<45fd> 1732
<45fe> 2847

Note how the character codes are in increasing byte-value order, and that neither the character codes nor the
CIDs are contiguous, resulting in single mappings. The order of the Adobe-Japan1-6 CIDs that represent kanji
favors legacy Japanese encodings, such as 7-bit ISO-2022, Shift-JIS, and EUC-JP. Encodings such as Unicode
or DBCS-Host do not follow the same ordering (that is, the sequence in which characters are encoded), thus
usually require many more mappings.

When building complex CMap resources with a large number of mappings that use non-contiguous character
codes or non-contiguous CIDs, it is easier to begin with single mappings, which is the output of the above Perl
program, then to later collapse those mappings that are contiguous. A tool, written in Perl, that can collapse
contiguous mappings of a CMap resource is described at the end of this document, in Appendix A, and is also
attached to this document. When processing these 190 DBCS-Host mappings with this tool, they are reduced
by only one mapping, resulting in 189 mappings. Only the following two mappings have contiguous character
codes and contiguous CIDs:

<45fa> 1259
<45fb> 1260

These two single mappings are subsequently reduced to the following range mapping:

15Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

<45fa> <45fb> 1259

This slight reduction in mappings is common when dealing with DBCS-Host and Unicode encodings. When
building the entire Japanese DBCS-Host CMap resource based on the Adobe-Japan1-6 character collection, the
approximately 7,200 character code to CID mappings are reduced to just under 5,000 mapping lines.

1.4	 The CMap Resource Trailer

The following static lines terminate the CMap resource by closing the dictionary and defining it as a CMap
resource:

endcmap
CMapName currentdict /CMap defineresource pop
end
end
%%EndResource
%%EOF

1.5	 The Identity CMap Resource

The Identity CMap resource is a special-purpose CMap resource whose purpose is to allow all CIDs of a
character collection to be accessible through the use of the CID values themselves. A standard CMap resource
allows a subset of the character collection to be accessed through the use of conventional character codes. The
name of an Identity CMap resource is the concatenation of the /Registry, /Ordering, and /Supplement values
of a character collection, using a single hyphen as the joining element. So, the Identity CMap resource for the
Adobe-Japan1-6 character collection is named as follows:

Adobe-Japan1-6

In other words, the same name as the character collection itself. This naming convention makes its content and
purpose explicit.

One use for an Identity CMap resource is for proofing CIDFont resources. It is considered a “best practice” to
proof a CIDFont resource by CID rather than by character code.

NOTE:	 The CMap resources, at least the ones developed by Adobe, are fully tested. They do not change from
CIDFont resource to CIDFont resource. They are common to all CIDFont resources of a given character
collection.

Adobe issues an Identity CMap resource for each Supplement of every public character collection. The special-
purpose Adobe-Identity-0 character collection includes two special-purpose Identity CMap resources named
Identity-H and Identity-V.

1.5.1	 Unique Entries and Values

An Identity CMap resource includes a special dictionary entry not found in other CMap resources, specifically
a /CIDCount value. An example is as follows (taken from the Identity CMap resource for the Adobe-Japan1-6
character collection):

/CIDCount 23058 def

This entry explicitly indicates the number of CIDs in the specified character collection.

The following are lines extracted from the Identity CMap resource for the Adobe-Japan1-6 character collection
(two from the CMap resource header, and one from the CMap resource body):

16Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

%%BeginResource: CMap (Identity)
%%Title: (Identity Adobe Japan1 6)
/CMapName /Adobe-Japan1-6 def

Note how the string “Identity” is used for the CMap resource name in the header, but not in the body.

1.5.2	 Identity CMap Resource Code Space Range

The code space range for Identity CMap resources begin with 0x0000, with an upper limit of 0xFFFF (this
supports character collections with up to 65,535 CIDs, which is the maximum number of CIDs in a CIDFont
resource, meaning CIDs 0 through 65534). But, instead of using the following code space range:

1 begincodespacerange
<0000> <FFFF>
endcodespacerange

the last occupied “row” is instead used as the upper limit, as follows (the example below is for the Adobe-
Japan1-6 character collection, which has 23,058 CIDs):

1 begincodespacerange
<0000> <5AFF>
endcodespacerange

The hexadecimal equivalent of CID+23057 is 0x5A11, and the upper limit of 0x5AFF as expressed above covers
this. Exactly what upper limit is specified depends on the number of CIDs in the character collection. The reason
0x0000 through 0xFFFF is not used is because the size of the code space range can affect memory usage.

Because an Identity CMap resource’s character codes and CIDs are contiguous by definition, it is simply a
matter of mapping blocks of 256 character codes, with second-byte values ranging from 0x00 through 0xFF, to
the appropriate CIDs, as follows:

91 begincidrange
<0000> <00ff> 0
<0100> <01ff> 256
<0200> <02ff> 512
<0300> <03ff> 768
<…83 mappings omitted…>
<5700> <57ff> 22272
<5800> <58ff> 22528
<5900> <59ff> 22784
<5a00> <5a11> 23040
endcidrange

1.5.3	 Using Identity CMap Resources

The following examples demonstrates how Identity CMap resources can be used as arguments of the findfont or
selectfont (PostScript Level 2 or PostScript 3) procedures:

/HeiseiMinStdN-W3--Adobe-Japan1-6 findfont 12 scalefont setfont
/HeiseiMinStdN-W3--Adobe-Japan1-6 12 selectfont

This usage and behavior is no different from that of conventional CMap resources. Subsequent use of the show
operator take the following form, using CIDs 1500 and 1501 as the example:

<05dc 05dd> show

Values inside < > brackets are interpreted as hexadecimal values, and spaces are ignored. PostScript looping
structures can be used to easily render all glyphs in a CIDFont resource.

1.5.4	 Example Identity CMap Resource

The following is a complete Identity CMap resource, specifically that for the Adobe-Japan1-6 character
collection. It can be used as a template for creating Identity CMap resources for other character collections.

17Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

%!PS-Adobe-3.0 Resource-CMap
%%DocumentNeededResources: ProcSet (CIDInit)
%%IncludeResource: ProcSet (CIDInit)
%%BeginResource: CMap (Identity)
%%Title: (Identity Adobe Japan1 6)
%%Version: 1.003
%%Copyright: ---
%%Copyright: Copyright 1990-2009 Adobe Systems Incorporated.
%%Copyright: All rights reserved.
%%Copyright:
%%Copyright: Redistribution and use in source and binary forms, with or
%%Copyright: without modification, are permitted provided that the
%%Copyright: following conditions are met:
%%Copyright:
%%Copyright: Redistributions of source code must retain the above
%%Copyright: copyright notice, this list of conditions and the following
%%Copyright: disclaimer.
%%Copyright:
%%Copyright: Redistributions in binary form must reproduce the above
%%Copyright: copyright notice, this list of conditions and the following
%%Copyright: disclaimer in the documentation and/or other materials
%%Copyright: provided with the distribution.
%%Copyright:
%%Copyright: Neither the name of Adobe Systems Incorporated nor the names
%%Copyright: of its contributors may be used to endorse or promote
%%Copyright: products derived from this software without specific prior
%%Copyright: written permission.
%%Copyright:
%%Copyright: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
%%Copyright: CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
%%Copyright: INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
%%Copyright: MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
%%Copyright: DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
%%Copyright: CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
%%Copyright: SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
%%Copyright: NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
%%Copyright: LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
%%Copyright: HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
%%Copyright: CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
%%Copyright: OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
%%Copyright: SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
%%Copyright: ---
%%EndComments

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/CIDSystemInfo 3 dict dup begin
 /Registry (Adobe) def
 /Ordering (Japan1) def
 /Supplement 6 def
end def

/CMapName /Adobe-Japan1-6 def
/CMapVersion 1.003 def
/CMapType 1 def

/XUID [1 10 25614] def

/WMode 0 def

/CIDCount 23058 def

18Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

1 begincodespacerange
 <0000> <5AFF>
endcodespacerange

91 begincidrange
<0000> <00ff> 0
<0100> <01ff> 256
<0200> <02ff> 512
<0300> <03ff> 768
<0400> <04ff> 1024
<0500> <05ff> 1280
<0600> <06ff> 1536
<0700> <07ff> 1792
<0800> <08ff> 2048
<0900> <09ff> 2304
<0a00> <0aff> 2560
<0b00> <0bff> 2816
<0c00> <0cff> 3072
<0d00> <0dff> 3328
<0e00> <0eff> 3584
<0f00> <0fff> 3840
<1000> <10ff> 4096
<1100> <11ff> 4352
<1200> <12ff> 4608
<1300> <13ff> 4864
<1400> <14ff> 5120
<1500> <15ff> 5376
<1600> <16ff> 5632
<1700> <17ff> 5888
<1800> <18ff> 6144
<1900> <19ff> 6400
<1a00> <1aff> 6656
<1b00> <1bff> 6912
<1c00> <1cff> 7168
<1d00> <1dff> 7424
<1e00> <1eff> 7680
<1f00> <1fff> 7936
<2000> <20ff> 8192
<2100> <21ff> 8448
<2200> <22ff> 8704
<2300> <23ff> 8960
<2400> <24ff> 9216
<2500> <25ff> 9472
<2600> <26ff> 9728
<2700> <27ff> 9984
<2800> <28ff> 10240
<2900> <29ff> 10496
<2a00> <2aff> 10752
<2b00> <2bff> 11008
<2c00> <2cff> 11264
<2d00> <2dff> 11520
<2e00> <2eff> 11776
<2f00> <2fff> 12032
<3000> <30ff> 12288
<3100> <31ff> 12544
<3200> <32ff> 12800
<3300> <33ff> 13056
<3400> <34ff> 13312
<3500> <35ff> 13568
<3600> <36ff> 13824
<3700> <37ff> 14080
<3800> <38ff> 14336
<3900> <39ff> 14592
<3a00> <3aff> 14848
<3b00> <3bff> 15104
<3c00> <3cff> 15360

19Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

<3d00> <3dff> 15616
<3e00> <3eff> 15872
<3f00> <3fff> 16128
<4000> <40ff> 16384
<4100> <41ff> 16640
<4200> <42ff> 16896
<4300> <43ff> 17152
<4400> <44ff> 17408
<4500> <45ff> 17664
<4600> <46ff> 17920
<4700> <47ff> 18176
<4800> <48ff> 18432
<4900> <49ff> 18688
<4a00> <4aff> 18944
<4b00> <4bff> 19200
<4c00> <4cff> 19456
<4d00> <4dff> 19712
<4e00> <4eff> 19968
<4f00> <4fff> 20224
<5000> <50ff> 20480
<5100> <51ff> 20736
<5200> <52ff> 20992
<5300> <53ff> 21248
<5400> <54ff> 21504
<5500> <55ff> 21760
<5600> <56ff> 22016
<5700> <57ff> 22272
<5800> <58ff> 22528
<5900> <59ff> 22784
<5a00> <5a11> 23040
endcidrange
endcmap
CMapName currentdict /CMap defineresource pop
end
end

%%EndResource
%%EOF

1.6	 CMap Resource Filenames & Naming Conventions

CMap resources, when instantiated as a file, are named according to their /CMapName value (without the
preceding slash).

CMap resource names established by Adobe are generally composed of up to three parts, each separated by
a hyphen. The first part indicates the character set, the second part indicates the encoding, and the third part
indicates writing direction. Although CMap resources can use arbitrary names, these conventions make it easier
to identify characteristics of the character set and encoding that they are intended to support.

The table below lists the character set designators based on existing Adobe CMap resources, with the Unicode
ones listed first because of their elevated importance:

Character Set Designator Description

UniJIS Adobe-Japan1 subset of Unicode

UniJIS2004 “UniJIS” with JIS X 0213:2004 prototypical glyphs

UniJISX0213 Adobe-Japan1 subset of Unicode—65 symbols map to proportional glyphs, not full-width ones

20Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

Character Set Designator Description

UniJISX02132004 “UniJISX0213” with JIS X 0213:2004 prototypical glyphs

UniHojo Adobe-Japan2 subset of Unicode (deprecated)

UniGB Adobe-GB1 subset of Unicode

UniCNS Adobe-CNS1 subset of Unicode

UniKS Adobe-Korea1 subset of Unicode

78 JIS C 6226-1978 prototypical glyphs

78ms “90ms” with JIS C 6226-1978 prototypical glyphs

83pv Apple Macintosh KanjiTalk Version 6 character set

90ms Microsoft Windows 3.1J character set

90msp “90ms” with proportional glyphs for JIS X 0201

90pv Apple Macintosh KanjiTalk Version 7 character set

Add Fujitsu FMR Japanese character set

Ext NEC Japanese character set

NWP NEC Word Processor

Hojo JIS X 0212-1990

GB GB 2312-80

GBpc “GB” with proportional glyphs for GB 1988

GBT GB/T 12345-90

GBTpc “GBT” with proportional glyphs for GB 1988

GBK GBK

GBKp “GBK” with proportional glyphs for GB 1988

GBK2K GB 18030

CNS CNS 11643

CNS1 CNS 11643 Plane 1

CNS2 CNS 11643 Plane 2

ETen Big Five plus ETen extensions

ETenms “ETen” with proportional glyphs for ASCII

ETHK “HKscs” plus ETen extensions

HKgccs Hong Kong GCCS

HKscs Hong Kong SCS

21Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

Character Set Designator Description

KSC KS X 1001

KSCpc “KSC” with proportional glyphs for KS X 1003 plus Macintosh extensions

KSCms “KSC” with proportional glyphs for KS X 1003 plus Unified Hangul Code extensions

The table below lists the encoding designators based on existing Adobe CMap resources:

Encoding Designator Description

UTF8 Unicode UTF-8 encoding form

UTF16 Unicode UTF-16 (UTF-16BE) encoding form

UTF32 Unicode UTF-32 (UTF-32BE) encoding form

UCS2 Unicode UCS-2 encoding form (deprecated)

EUC Extended Unix Code

RKSJ Shift-JIS encoding

B5 Big Five encoding

Johab Johab encoding

UHC Unified Hangul Code

If the encoding is 7-bit ISO-2022, the encoding value is omitted. Also, the actual encoding ranges used for
EUC and RKSJ may differ depending on the character collection or supported character set. The writing mode
must be either H or V, and should agree with the /WMode dictionary entry in the CMap resource itself. A
-V CMap resource should contain only those character code to CID mappings that are specific to the vertical
writing mode, and should also specify the usecmap operator to indicate from which CMap resource to inherit
its character code to CID mappings.

The CMap resources developed by Adobe are unique in that their names do not contain, as a prefix, the string
that corresponds to the /Registry string, because they are intended to be public, and thus used by any font
developer. Developers other than Adobe are required to register a short /Registry string that should be prefixed
to their CMap resource names (/CMapName), regardless of the character collection on which they are based.
/Registry strings can be registered through Microsoft.* The purpose of this policy is to avoid duplicate CMap
resource names.

*  http://www.microsoft.com/typography/links/vendorlist.aspx

22Adobe Technical Note #5099: Developing CMap Resources for CID-Keyed Fonts

Appendix A: CMap Resource Compiler/Decompiler
Attached to this document is a tool, written in Perl and named cmap-tool.pl, that can be used to compile or
decompile CMap resources. It assumes a complete CMap resource as input. This tool takes a CMap resource
from standard input (STDIN), and outputs a CMap resource to standard output (STDOUT). In addition to
sorting the character codes, collapsing single mappings with contiguous character codes and contiguous CIDs
into range mappings, and separating the mapping lines into groups of 100, statistics, such as

●● the total number of input character codes and mappings;

●● the total number of collapsed mappings (if any);

●● the total number of output character codes and mappings; and

●● the average number of character codes per mapping

are written to standard error (STDERR).

When this tool detects that it is processing a UTF-32 CMap resource (the /CMapName string includes “UTF32”),
it automatically generates matching UTF-8 and UTF-16 CMap resources. In other words, there is no need to
separately develop UTF-8 and UTF-16 CMap resources, at least when using this tool, because they will be
created automatically when compiling the UTF-32 one.

This tool also includes an “-e” command-line option, which, when invoked, expands all range mappings into
a single block of single mappings. In effect, this command-line option reverses this tool’s default behavior of
collapsing single mappings with contiguous character codes and contiguous CIDs into range mappings.

Other miscellaneous error detection is automatically performed, such as if a character code is outside the
specified code space range definition.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written consent of the publisher. Any software referred to herein is furnished under license, and may only be used
or copied in accordance with the terms of such license.

This publication and the information herein is furnished AS IS, is subject to change without notice, and should not be construed as a commitment by Adobe
Systems Incorporated. Adobe Systems Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any kind—
expressed, implied, statutory, or otherwise—with respect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for
particular purposes, and non-infringement of third party rights.

Author

Dr. Ken Lunde, Senior Computer Scientist, CJKV Type Development, Adobe Systems Incorporated

Publishing Date

March 14, 2012

Adobe Systems Incorporated • 345 Park Avenue, San Jose, CA 95110-2704 USA • www.adobe.com

Adobe, the Adobe logo, and “Better by Adobe.” are either registered trademarks or trademarks of Adobe Systems Incorporated in
the United States and/or other countries. All other trademarks are the property of their respective owners.

© 1998, 2012 Adobe Systems Incorporated. All Rights Reserved.

#!/usr/bin/perl

This tool was written by Dr. Ken Lunde, Adobe Systems Incorporated
lunde@adobe.com

require "ctime.pl";

chomp($date = &ctime(time));
($year) = (split(/\s+/,$date))[4];

$expand = $expanded = 0;
$outfile = "STDOUT";

UTF-8 and UTF-16 code space ranges

$cs8 = "4 begincodespacerange\n <00> <7F>\n <C080> <DFBF>\n <E08080> <EFBFBF>\n <F0808080> <F7BFBFBF>\nendcodespacerange\n";
$cs16 = "3 begincodespacerange\n <0000> <D7FF>\n <D800DC00> <DBFFDFFF>\n <E000> <FFFF>\nendcodespacerange\n";

UTF-8 and UTF-16 .notdef ranges for Adobe's public ROSes

$nd8 = "\n1 beginnotdefrange\n<00> <1f> 1\nendnotdefrange\n";
$nd16 = "\n1 beginnotdefrange\n<0000> <001f> 1\nendnotdefrange\n";

UTF-8 and UTF-16 XUID arrays for Adobe's public ROSes

%xuid = (# XUID array values for UTF-8 and UTF-16 CMap files
 "UniGB-UTF8-H" => "1 10 25379",
 "UniGB-UTF8-V" => "1 10 25450",
 "UniGB-UTF16-H" => "1 10 25601",
 "UniGB-UTF16-V" => "1 10 25602",
 "UniCNS-UTF8-H" => "1 10 25397",
 "UniCNS-UTF8-V" => "1 10 25398",
 "UniCNS-UTF16-H" => "1 10 25591",
 "UniCNS-UTF16-V" => "1 10 25592",
 "UniJIS-UTF8-H" => "1 10 25359",
 "UniJIS-UTF8-V" => "1 10 25440",
 "UniJIS-UTF16-H" => "1 10 25611",
 "UniJIS-UTF16-V" => "1 10 25612",
 "UniJIS2004-UTF8-H" => "1 10 25631",
 "UniJIS2004-UTF8-V" => "1 10 25632",
 "UniJIS2004-UTF16-H" => "1 10 25619",
 "UniJIS2004-UTF16-V" => "1 10 25630",
 "UniHojo-UTF8-H" => "1 10 25428",
 "UniHojo-UTF8-V" => "1 10 25429",
 "UniHojo-UTF16-H" => "1 10 25513",
 "UniHojo-UTF16-V" => "1 10 25514",
 "UniKS-UTF8-H" => "1 10 25414",
 "UniKS-UTF8-V" => "1 10 25415",
 "UniKS-UTF16-H" => "1 10 25544",
 "UniKS-UTF16-V" => "1 10 25545",
);

while ($ARGV[0]) { # Handle the single option "-e"
 if ($ARGV[0] eq "-e") {
 $expand = 1;
 shift;
 } else {
 print STDERR "Invalid option: $ARGV[0]! Skipping...\n";
 shift;
 }
}

undef $/;
$data = <STDIN>;
%cmap = &GetData($data); # Read in CMap file's information

if (exists $cmap{UseCMap}) { # Read in primary CMap file's information
 open(HCMAP,"< $cmap{UseCMap}") or die "Cannot locate horizontal CMap file";
 $data2 = <HCMAP>;
 close(HCMAP);
 %cmap2 = &GetData($data2);
}

if (exists $cmap{CodeSpace}) { # Store codespace information
 &StoreCodeSpace($cmap{CodeSpace});
} else {
 &StoreCodeSpace($cmap2{CodeSpace});
}

%single_mappings = &StoreMappings($cmap{Mappings}) if exists $cmap{Mappings};

$cmap{NewMappings} = &CreateMappings(%single_mappings) if exists $cmap{Mappings};

if ($cmap{Name} eq "$cmap{Registry}-$cmap{Ordering}-$cmap{Supplement}") {
 &PrintIdentityCMap(%cmap);
} elsif (exists $cmap{UseCMap}) {
 &PrintUseCMap(%cmap);
} else {
 &PrintCMap(%cmap);
}

if ($cmap{Name} =~ /UTF32/) {
 foreach $utf (8, 16) {
 $outfile = "OUTFILE";
 $cmap{Name} =~ s/UTF32/UTF$utf/;
 print STDERR "Automatically creating $cmap{Name}...";
 $cmap{UseCMap} =~ s/UTF32/UTF$utf/ if $cmap{UseCMap};
 $cmap{XUID} = $xuid{$cmap{Name}};
 if (exists $cmap{CodeSpace}) {
 if ($utf == 8) {
 $cmap{CodeSpace} = $cs8;
 } else {
 $cmap{CodeSpace} = $cs16;
 }
 &StoreCodeSpace($cmap{CodeSpace});
 } else {
 if ($utf == 8) {
 $cmap2{CodeSpace} = $cs8;
 } else {
 $cmap2{CodeSpace} = $cs16;
 }
 &StoreCodeSpace($cmap2{CodeSpace});
 }
 if ($utf == 8) {
 $cmap{NotDef} = $nd8;
 %utf_mappings = &Convert2UTF8(%single_mappings);
 } else {
 $cmap{NotDef} = $nd16;
 %utf_mappings = &Convert2UTF16(%single_mappings);
 }
 $cmap{NewMappings} = &CreateMappings(%utf_mappings) if exists $cmap{Mappings};
 open($outfile,">$cmap{Name}") or die "Cannot open $cmap{Name} file!\n";
 if (exists $cmap{UseCMap}) {
 &PrintUseCMap(%cmap);
 } else {
 &PrintCMap(%cmap);
 }
 close($outfile);
 print STDERR "Done.\n";
 $cmap{Name} =~ s/UTF$utf/UTF32/;
 $cmap{UseCMap} =~ s/UTF$utf/UTF32/ if $cmap{UseCMap};
 }
}

sub GetData ($) { # For extracting CMap information
 my ($cmapfile) = @_;
 my ($usecmap,$r,$o,$s,$name,$version,$uidoffset,$xuid,$wmode) = ("","","","","","","","","");
 my ($codespacerange,$notdefrange,$mappings) = ("","","");
 undef %data;

 ($usecmap) = $cmapfile =~ m{/([0-9a-zA-Z-]+)\s+usecmap};

 ($r,$o,$s) = $cmapfile =~ m{
 \s* /CIDSystemInfo \s+ \d+ \s+ dict \s+ dup \s+ begin
 \s* /Registry \s+ \((.+) \) \s+ def
 \s* /Ordering \s+ \((.+) \) \s+ def
 \s* /Supplement \s+ (\d+) \s+ def
 \s* end \s+ def
 }msx;

 ($name) = $cmapfile =~ m{/CMapName\s+/([0-9a-zA-Z-]+)\s+def};
 ($version) = $cmapfile =~ m{/CMapVersion\s+(\d+(?:\.\d*))\s+def};
 ($uidoffset) = $cmapfile =~ m{(/UIDOffset\s+\d+)\s+def};
 ($xuid) = $cmapfile =~ m{/XUID\s+\[([0-9]+)\]\s+def};
 ($wmode) = $cmapfile =~ m{/WMode\s+([01])\s+def};
 ($codespacerange) = $cmapfile =~ m{
 (
 \d+
 \s+
 begincodespacerange
 .+
 endcodespacerange
 \s
)
 }msx;
 ($notdefrange) = $cmapfile =~ m{
 (
 \s
 \d+
 \s+
 beginnotdefrange
 .+
 endnotdefrange
 \s
)
 }msx;
 ($mappings) = $cmapfile =~ m{
 (
 \d+
 \s+
 begin(?:bf|cid)(?:char|range)
 .+
 end(?:bf|cid)(?:char|range)
)
 \s+
 endcmap
 }msx;

 $data{UseCMap} = $usecmap if $usecmap;
 $data{Registry} = $r if $r;
 $data{Ordering} = $o if $o;
 $data{Supplement} = $s if $s or $s eq "0";
 $data{Name} = $name if $name;
 $data{Version} = $version if $version;
 $data{UIDOffset} = "$uidoffset def\n" if $uidoffset;
 $data{XUID} = $xuid if $xuid;
 $data{WMode} = $wmode if $wmode or $wmode eq "0";
 $data{CodeSpace} = $codespacerange if $codespacerange;
 $data{NotDef} = $notdefrange if $notdefrange;
 $data{Mappings} = $mappings if $mappings;

 return %data;
}

sub StoreCodeSpace ($) { # Store the codespace information
 my ($info) = @_;
 my $index = 0;

 @lines = split(/[\r\n]+/,$info);
 foreach $line (@lines) {
 if (($s,$e) = $line =~ /^\s*<([\dA-F]+)>\s+<([\dA-F]+)>\s*$/) {
 $enc_l[$index] = length($s);
 $enc_s[$index] = hex($s);
 $enc_e[$index] = hex($e);
 $index++;
 }
 }
}

sub StoreMappings ($) {
 my ($mappings) = @_;
 my $processed = 0;

 ($bforcid) = $mappings =~ /begin(bf|cid)(?:char|range)/;
 @lines = split(/[\r\n]+/,$mappings);

 print STDERR "Reading CMap file into a lookup structure...";
 foreach $line (@lines) {
 $line = uc $line;
 if ($line =~ /^\s*<([\dA-F]+)>\s+(\d+)\s*$/) { # char
 $processed++;
 $d = &GetLengthOnly(hex($1));
 $hex = sprintf("%0${d}X",hex($1));
 if (not defined $mapping{"0x" . $hex}) { # MODIFIED
 $mapping{"0x" . $hex} = $2; #MODIFIED
 $expanded++;
 } else {
 printf STDERR "Duplicate mapping at %08X!\n",hex($1);
 }
 } elsif ($line =~ /^\s*<([\dA-F]+)>\s+<([\dA-F]+)>\s+(\d+)\s*$/) { # range
 $processed++;
 $cid = $3;
 for ($dec = hex($1); $dec <= hex($2); $dec++) {
 $d = &GetLengthOnly($dec);
 $hex = sprintf("%0${d}X",$dec);
 if (not defined $mapping{"0x" . $hex}) { # MODIFIED "0x" .
 $mapping{"0x" . $hex} = $cid; # MODIFIED
 } else {
 printf STDERR "Duplicate mapping at %08X!\n",$dec;
 }
 $expanded++;
 $cid++;
 }
 }
 }
 print STDERR "Done.\n";
 print STDERR "Processed $processed CMap lines into $expanded mappings.\n";
 return %mapping;
}

sub CreateMappings (%) {
 my (%single_mappings) = @_;
 my ($e,$s,$char,$range,$charbuff,$rangebuff) = ("","","","","","");
 my ($collapsed,$count,$i,$tallyi,$j,$tallyj,$tally,$start) = (0,0,0,0,0,0,0,0);
 $cmap{NewMappings} = "";

 print STDERR "Processing the mappings...";
 if ($expand) {
 if ($expanded) {
 $cmap{NewMappings} .= "$expanded begin${bforcid}char\n";
 foreach $entry (sort ByThings keys %single_mappings) {
 $d = &GetLength(hex($entry),hex($entry));
 $cmap{NewMappings} .= sprintf("<%0${d}x> $single_mappings{$entry}\n",hex($entry));
 }
 $cmap{NewMappings} .= "end${bforcid}char\n";
 }
 print STDERR "Done.\n";
 } elsif ($expanded) {
 foreach $entry (sort ByThings keys %single_mappings) {
 $e = $s = hex($entry); $c = $single_mappings{$entry};
 unless (not $start) {
 if ((($s % 256) == (($oe % 256) + 1)) && ($s == ($oe + 1)) &&
 ($c == ($oc + ($oe - $os) + 1))) {
 $c = $oc; $s = $os;
 $collapsed++;
 } else {
 $d = &GetLength($os,$oe);
 if ($os == $oe) {
 $j++;
 if ($j < 100) {
 $char .= sprintf("<%0${d}x> $oc\n",$os);
 $count++;
 } else {
 $char .= sprintf("<%0${d}x> $oc\n",$os);
 $char .= "end${bforcid}char\n\n";
 $count++;
 $charbuff .= "$j begin${bforcid}char\n$char" if $j;
 $tallyj += $j;
 $char = "";
 $j = 0;
 }
 } else {
 $i++;
 if ($i < 100) {
 $range .= sprintf("<%0${d}x> <%0${d}x> $oc\n",$os,$oe);
 $count += ($oe - $os) + 1;
 } else {
 $range .= sprintf("<%0${d}x> <%0${d}x> $oc\n",$os,$oe);
 $range .= "end${bforcid}range\n\n";
 $count += ($oe - $os) + 1;
 $rangebuff .= "$i begin${bforcid}range\n$range" if $i;
 $tallyi += $i;
 $range = "";
 $i = 0;
 }
 }
 }
 }
 $oe = $e; $os = $s; $oc = $c; $start = 1;
 }
 }

 if (not $expand) {
 if ($expanded) {
 $d = &GetLength($os,$oe);
 if ($os == $oe) {
 $char .= sprintf("<%0${d}x> $oc\n",$os);
 $count++;
 $j++;
 } else {
 $range .= sprintf("<%0${d}x> <%0${d}x> $oc\n",$os,$oe);
 $count += ($oe - $os) + 1;
 $i++;
 }
 $tallyi += $i;
 $tallyj += $j;
 $charbuff .= "$j begin${bforcid}char\n${char}end${bforcid}char\n" if $j;
 $rangebuff .= "$i begin${bforcid}range\n${range}end${bforcid}range\n" if $i;
 $cmap{NewMappings} .= "$charbuff\n" if $tallyj;
 $cmap{NewMappings} .= "$rangebuff\n" if $tallyi;
 }
 $tally = $tallyi + $tallyj;
 print STDERR "Done.\n";
 print STDERR "Collapsed $collapsed of $expanded mappings.\n";
 print STDERR "Total $count character mappings in $tally CMap lines.\n";
 printf STDERR "%3.2f average mappings per CMap line.\n",($count / $tally);
 }
 return $cmap{NewMappings};
}

sub GetLength ($$) {
 my ($one,$two) = @_;
 my $index = 0;

 foreach $index (0 .. $#enc_s) {
 if (($one >= $enc_s[$index]) && ($two <= $enc_e[$index])) {
 return $enc_l[$index];
 }
 }
 printf STDERR "Codes 0x%X ($one) thru 0x%X ($two) not in range!\n",$one,$two;
 print STDERR "WARNING: Defaulting to eight-digit representation...\n";
 return 8;
}

sub GetLengthOnly ($) {
 my ($code) = @_;
 my $index = 0;

 foreach $index (0 .. $#enc_s) {
 if (($code >= $enc_s[$index]) && ($code <= $enc_e[$index])) {
 return $enc_l[$index];
 }
 }
 return 8;
}

sub ByThings {
 substr($a,2,4) cmp substr($b,2,4) or hex($a) <=> hex($b);
}

sub PrintCMap (%) {
 my (%cmap) = @_;
 my $uid;
 if (defined $cmap{UIDOffset}) {
 $uid = "$cmap{UIDOffset}/XUID [$cmap{XUID}] def";
 } else {
 $uid = "/XUID [$cmap{XUID}] def";
 }

 print $outfile <<EOD;
\%!PS-Adobe-3.0 Resource-CMap
\%\%DocumentNeededResources: ProcSet (CIDInit)
\%\%IncludeResource: ProcSet (CIDInit)
\%\%BeginResource: CMap ($cmap{Name})
\%\%Title: ($cmap{Name} $cmap{Registry} $cmap{Ordering} $cmap{Supplement})
\%\%Version: $cmap{Version}
\%\%Copyright: ---
\%\%Copyright: Copyright 1990-$year Adobe Systems Incorporated.
\%\%Copyright: All rights reserved.
\%\%Copyright:
\%\%Copyright: Redistribution and use in source and binary forms, with or
\%\%Copyright: without modification, are permitted provided that the
\%\%Copyright: following conditions are met:
\%\%Copyright:
\%\%Copyright: Redistributions of source code must retain the above
\%\%Copyright: copyright notice, this list of conditions and the following
\%\%Copyright: disclaimer.
\%\%Copyright:
\%\%Copyright: Redistributions in binary form must reproduce the above
\%\%Copyright: copyright notice, this list of conditions and the following
\%\%Copyright: disclaimer in the documentation and/or other materials
\%\%Copyright: provided with the distribution.
\%\%Copyright:
\%\%Copyright: Neither the name of Adobe Systems Incorporated nor the names
\%\%Copyright: of its contributors may be used to endorse or promote
\%\%Copyright: products derived from this software without specific prior
\%\%Copyright: written permission.
\%\%Copyright:
\%\%Copyright: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
\%\%Copyright: CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
\%\%Copyright: INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
\%\%Copyright: MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
\%\%Copyright: DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
\%\%Copyright: CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
\%\%Copyright: SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
\%\%Copyright: NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
\%\%Copyright: LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
\%\%Copyright: HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
\%\%Copyright: CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
\%\%Copyright: OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
\%\%Copyright: SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
\%\%Copyright: ---
\%\%EndComments

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/CIDSystemInfo 3 dict dup begin
 /Registry ($cmap{Registry}) def
 /Ordering ($cmap{Ordering}) def
 /Supplement $cmap{Supplement} def
end def

/CMapName /$cmap{Name} def
/CMapVersion $cmap{Version} def
/CMapType 1 def

$uid

/WMode $cmap{WMode} def

$cmap{CodeSpace}$cmap{NotDef}
$cmap{NewMappings}endcmap
CMapName currentdict /CMap defineresource pop
end
end

\%\%EndResource
\%\%EOF
EOD
}

sub PrintUseCMap (%) {
 my (%cmap) = @_;
 my $uid;
 if (defined $cmap{UIDOffset}) {
 $uid = "$cmap{UIDOffset}/XUID [$cmap{XUID}] def";
 } else {
 $uid = "/XUID [$cmap{XUID}] def";
 }

 print $outfile <<EOD;
\%!PS-Adobe-3.0 Resource-CMap
\%\%DocumentNeededResources: ProcSet (CIDInit)
\%\%DocumentNeededResources: CMap ($cmap{UseCMap})
\%\%IncludeResource: ProcSet (CIDInit)
\%\%IncludeResource: CMap ($cmap{UseCMap})
\%\%BeginResource: CMap ($cmap{Name})
\%\%Title: ($cmap{Name} $cmap{Registry} $cmap{Ordering} $cmap{Supplement})
\%\%Version: $cmap{Version}
\%\%Copyright: ---
\%\%Copyright: Copyright 1990-$year Adobe Systems Incorporated.
\%\%Copyright: All rights reserved.
\%\%Copyright:
\%\%Copyright: Redistribution and use in source and binary forms, with or
\%\%Copyright: without modification, are permitted provided that the
\%\%Copyright: following conditions are met:
\%\%Copyright:
\%\%Copyright: Redistributions of source code must retain the above
\%\%Copyright: copyright notice, this list of conditions and the following
\%\%Copyright: disclaimer.
\%\%Copyright:
\%\%Copyright: Redistributions in binary form must reproduce the above
\%\%Copyright: copyright notice, this list of conditions and the following
\%\%Copyright: disclaimer in the documentation and/or other materials
\%\%Copyright: provided with the distribution.
\%\%Copyright:
\%\%Copyright: Neither the name of Adobe Systems Incorporated nor the names
\%\%Copyright: of its contributors may be used to endorse or promote
\%\%Copyright: products derived from this software without specific prior
\%\%Copyright: written permission.
\%\%Copyright:
\%\%Copyright: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
\%\%Copyright: CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
\%\%Copyright: INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
\%\%Copyright: MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
\%\%Copyright: DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
\%\%Copyright: CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
\%\%Copyright: SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
\%\%Copyright: NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
\%\%Copyright: LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
\%\%Copyright: HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
\%\%Copyright: CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
\%\%Copyright: OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
\%\%Copyright: SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
\%\%Copyright: ---
\%\%EndComments

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/$cmap{UseCMap} usecmap

/CIDSystemInfo 3 dict dup begin
 /Registry ($cmap{Registry}) def
 /Ordering ($cmap{Ordering}) def
 /Supplement $cmap{Supplement} def
end def

/CMapName /$cmap{Name} def
/CMapVersion $cmap{Version} def
/CMapType 1 def

$uid

/WMode $cmap{WMode} def

$cmap{NewMappings}endcmap
CMapName currentdict /CMap defineresource pop
end
end

\%\%EndResource
\%\%EOF
EOD
}

sub PrintIdentityCMap (%) {
 my (%cmap) = @_;
 my $uid;
 if (defined $cmap{UIDOffset}) {
 $uid = "$cmap{UIDOffset}/XUID [$cmap{XUID}] def";
 } else {
 $uid = "/XUID [$cmap{XUID}] def";
 }

 print $outfile <<EOD;
\%!PS-Adobe-3.0 Resource-CMap
\%\%DocumentNeededResources: ProcSet (CIDInit)
\%\%IncludeResource: ProcSet (CIDInit)
\%\%BeginResource: CMap (Identity)
\%\%Title: (Identity $cmap{Registry} $cmap{Ordering} $cmap{Supplement})
\%\%Version: $cmap{Version}
\%\%Copyright: ---
\%\%Copyright: Copyright 1990-$year Adobe Systems Incorporated.
\%\%Copyright: All rights reserved.
\%\%Copyright:
\%\%Copyright: Redistribution and use in source and binary forms, with or
\%\%Copyright: without modification, are permitted provided that the
\%\%Copyright: following conditions are met:
\%\%Copyright:
\%\%Copyright: Redistributions of source code must retain the above
\%\%Copyright: copyright notice, this list of conditions and the following
\%\%Copyright: disclaimer.
\%\%Copyright:
\%\%Copyright: Redistributions in binary form must reproduce the above
\%\%Copyright: copyright notice, this list of conditions and the following
\%\%Copyright: disclaimer in the documentation and/or other materials
\%\%Copyright: provided with the distribution.
\%\%Copyright:
\%\%Copyright: Neither the name of Adobe Systems Incorporated nor the names
\%\%Copyright: of its contributors may be used to endorse or promote
\%\%Copyright: products derived from this software without specific prior
\%\%Copyright: written permission.
\%\%Copyright:
\%\%Copyright: THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
\%\%Copyright: CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
\%\%Copyright: INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
\%\%Copyright: MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
\%\%Copyright: DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
\%\%Copyright: CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
\%\%Copyright: SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
\%\%Copyright: NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
\%\%Copyright: LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
\%\%Copyright: HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
\%\%Copyright: CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
\%\%Copyright: OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
\%\%Copyright: SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
\%\%Copyright: ---
\%\%EndComments

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/CIDSystemInfo 3 dict dup begin
 /Registry ($cmap{Registry}) def
 /Ordering ($cmap{Ordering}) def
 /Supplement $cmap{Supplement} def
end def

/CMapName /$cmap{Name} def
/CMapVersion $cmap{Version} def
/CMapType 1 def

$uid

/WMode $cmap{WMode} def

/CIDCount $expanded def

$cmap{CodeSpace}
$cmap{NewMappings}endcmap
CMapName currentdict /CMap defineresource pop
end
end

\%\%EndResource
\%\%EOF
EOD
}

sub Convert2UTF8 (%) {
 my (%single_mappings) = @_;
 my %new_mappings;

 foreach $entry (keys %single_mappings) {
 $new = $entry;
 $new =~ s/^0x//;
 $code = sprintf("0x%s\n",uc unpack("H*",&UTF32toUTF8(pack("H*",$new))));
 $new_mappings{$code} = $single_mappings{$entry};
 }
 return %new_mappings;
}

sub Convert2UTF16 (%) {
 my (%single_mappings) = @_;
 my %new_mappings;

 foreach $entry (keys %single_mappings) {
 $new = $entry;
 $new =~ s/^0x//;
 $code = sprintf("0x%s\n",uc unpack("H*",&UTF32toUTF16(pack("H*",$new))));
 $new_mappings{$code} = $single_mappings{$entry};
 }
 return %new_mappings;
}

sub UTF32toUTF8 ($) {
 my ($ch) = unpack("N",$_[0]);

 if ($ch <= 127) {
 chr($ch);
 } elsif ($ch <= 2047) {
 pack("C*", 192 | ($ch >> 6), 128 | ($ch & 63));
 } elsif ($ch <= 65535) {
 pack("C*", 224 | ($ch >> 12), 128 | (($ch >> 6) & 63), 128 | ($ch & 63));
 } elsif ($ch <= 1114111) {
 pack("C*", 240 | ($ch >> 18), 128 | (($ch >> 12) & 63), 128 | (($ch >> 6) & 63), 128 | ($ch & 63));
 } else {
 die "Whoah! Bad UTF-32 data! Perhaps outside of Unicode (UCS-4).\n";
 }
}

sub UTF32toUTF16 ($) {
 my ($ch) = unpack("N",$_[0]);

 if ($ch <= 65535) {
 pack("n", $ch);
 } elsif ($ch <= 1114111) {
 pack("n*", ((($ch - 65536) / 1024) + 55296),(($ch % 1024) + 56320));
 } else {
 die "Whoah! Bad UTF-32 data! Perhaps outside of Unicode (UCS-4).\n";
 }
}

