
Technical Note #5075

31 March 1992

Adobe Developer Support

PN LPS5075

Supporting Fonts in the
PostScript Language
Environment

Adobe Systems Incorporated

Corporate Headquarters
1585 Charleston Road PO Box 7900
Mountain View, CA 94039-7900
(415) 961-4400 Main Number
(415) 961-4111 Developer Support
Fax: (415) 961-3769

Adobe Systems Europe B.V.
Europlaza
Hoogoorddreef 54a
1101 BE Amsterdam Z-O, Netherlands
+31-20-6511 200
Fax: +31-20-6511 300

Adobe Systems Eastern Region
24 New England
Executive Park
Burlington, MA 01803
(617) 273-2120
Fax: (617) 273-2336

Adobe Systems Japan
Swiss Bank House 7F
4-1-8 Toranomon, Minato-ku
Tokyo 105, Japan
81-3-3437-8950
Fax: 81-3-3437-8968

Copyright 1991-1992 by Adobe Systems Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript, the PostScript logo, Adobe, the Adobe logo, Adobe Type Manager, ATM, Adobe Type
Reunion, FontFoundry, Adobe Garamond, Adobe Originals, Carta, Charlemagne, Cottonwood, and
Sonata are trademarks of Adobe SystemsIncorporated which may be registered in certain jurisdictions.
Apple, Macintosh, LaserWriter, and StyleWriter are registered trademarks of Apple Computer, Inc.
Hewlett-Packard, DeskJet, and LaserJet are registered trademarks of Hewlett-Packard Company. IBM
and OS/2 are registered trademarks of International Business Machines Corporation. Times is a trade-
mark of Linotype-Hell AG and/or its subsidiaries. ITC is a registered trademark of International Type-
face Corporation. MS-DOS is a registered trademark and Windows is a trademark of Microsoft Cor-
poration. WordPerfect is a trademark of WordPerfect Corporation. Other brand or product names are
the trademarks or registered trademarks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice,
and should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems
Incorporated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty
of any kind (express, implied or statutory) with respect to this publication, and expressly disclaims any
and all warranties of merchantability, fitness for particular purposes and noninfringement of third
party rights.

iii

Contents

List of Figures v

Supporting Fonts in the PostScript Language Environment 1

1 Introduction 1

2 The PostScript Language Font Solution 1
Adobe Type Manager Software for Display and Printing 2
The Type 1 Font Format and the Adobe Type Library 3
Multiple Master Type 1 Font Programs 5

3 Adobe Type 1 Font Packages 6

4 Font Installation 8

5 User Interface: Font and Style Selection 8
Font Names 8
Font Style Selection 9
Derived Styles and Alternate Characters 10

6 Screen Display 12
Character-Based Mode 12
WYSIWYG Mode 12

7 Preparing a Document for Printing 13

8 Font Downloading and Printing 14

9 Character Sets 15
Font Re-Encoding 15
Adobe Character Sets and Encodings 16
PC Character Sets 16
Expert Set and Symbol Fonts 17
Accented Characters 17

Appendix: Changes Since Earlier Versions 19

Index 21

iv Contents (31 Mar 92)

v

List of Figures

Figure 1 ATM software generated characters for a 72 dot-per-inch screen versus char-
acters scaled from a bitmap screen font 2

Figure 2 Monospaced Courier and proportionally spaced Times* Roman 4
Figure 3 Outline masters for the letter B from a multiple master font program 5
Figure 4 Font selection menu generated by Adobe Type Reunion 10
Figure 5 Styles derived algorithmically from a single outline character 11
Figure 6 Additional derived styles 11

vi List of Figures (31 Mar 92)

1

Supporting Fonts in the
PostScript Language
Environment

1 Introduction

There are a number of technical and user interface issues that software appli-
cations must address to present users with a good solution for viewing
and printing text. The advent of desktop publishing has brought an ever-
increasing number of users who expect high-quality screen and printer fonts,
a wide variety of typeface styles, and user-friendly font installation,selection,
and printing.

This document gives an overview of how software applications can achieve
an optimal font solution by supporting the PostScript™ language and the
Adobe™ Type 1 font format. Although some platform-specific examples are
discussed, this document mostly discusses general issues involved in how
applications handle font support.

2 The PostScript Language Font Solution

Adobe’s PostScript language is a powerful tool for describing the appearance
of text and graphics on a display or printed page and has become the
industry standard in this area. The PostScript language enables users to create
device-independent documents that can be printed on a variety of devices
ranging from dot matrix printers to high resolution imagesetters, as well as
color printers, plotters, and engraving machines. PostScript language
documents and fonts can also be transferred across platforms, giving users
unprecedented flexibility for working in networked environments.

The two essential resources for PostScript language font support are the
Adobe Type Manager™ and the Type 1 font programs from the Adobe Type
Library. Sections 2.1 and 2.2 describe these resources and explain their
value to application developers.

2 Supporting Fonts in the PostScript Language Environment (31 Mar 92)

2.1 Adobe Type Manager Software for Display and Printing

The Adobe Type Manager (ATM™) software module converts outline format
characters into a bitmap representation (a process called rasterization) for
screen display or for printing to non-PostScript language output devices. It
is currently available for the Macintosh®, OS/2®, and Windows™ 3.0
environments.

ATM software intercepts the standard text system calls made by an applica-
tion, rasterizes the required characters from the outline font, and displays
the resulting bitmap on the screen. This produces much more accurate bitmap
characters than can be achieved by scaling a bitmapped screen font to the
required size. Figure 1 shows the difference between a character generated by
the ATM software and a scaled bitmap screen font character.

The advantage of generating screen fonts from the outline font used for
printing is that the user gets WYSIWYG (what-you-see-is-what-you-get)
capability. The term WYSIWYG describes applications that attempt to
represent on the screen exactly what will be printed, so that line lengths, the
number of lines on a page, and the position of text and graphics will print
exactly as expected. This aids productivity because changes are more quickly
reflected on the display than by printing. Users can then visualize changes
and make decisions, thus shortening the development cycle.

Figure 1 ATM software generated characters for a 72 dot-per-inch screen
versus characters scaled from a bitmap screen font

ATM software also offers software developers and users the ability to send
output to less expensive, non-PostScript printers such as low-cost dot matrix
printers, as well as to medium resolution devices such as the Hewlett-
Packard® DeskJet® or the Apple® StyleWriter®. This gives even low-budget
users the ability to use the wide variety of available Type 1 font programs
and, in many cases, to achieve higher quality output than was previously
possible with those printers.

One of the most significant benefits to users is that they can invest in type-
faces for their current printer, and those fonts will work on a wide variety of
output devices, as well as on any PostScript language device to which they

2 The PostScript Language Font Solution 3

might upgrade in the future. In contrast, some brands of font rendering
software for Windows, for example, require the purchase of proprietary
format fonts that are compatible only with that software and platform.

Users appreciate applications that support a font format applicable to a wide
variety of applications, printers, and platforms. This, in turn, benefits
software developers by allowing their applications to appeal to a wider
spectrum of users who will appreciate the flexibility of the supported
font format.

The ATM software also offers developers an important resource by sup-
porting an application program interface (API). Applications can call the
ATM software to get standard or transformed (scaled, rotated, or skewed)
character bitmaps or to get character outlines for further transformations
or other special applications. Also, the ATM software can be called to draw
and fill Bézier curves for screen display.

For more details, see Adobe Technical Note #5072, “Advanced Type
Capabilities Using Adobe Type Manager Software on the Macintosh.”

2.2 The Type 1 Font Format and the Adobe Type Library

An outline format Type 1 font is called a font program—it is an executable
piece of software which, when executed by a PostScript interpreter, defines
a set of character and symbol outlines that can be referenced by PostScript
language documents. Because the font descriptions are software programs,
font developers can protect their typefaces as copyrightable software.
(Copyright protection benefits both font vendors and end users by trying to
prevent illegal copying and hence encouraging new typeface development.)

There are currently over 1300 fonts in the Adobe Type Library and over
13,000 Type 1 fonts available from all font vendors. There are Type 1 font
programs for virtually every modern language and alphabet. Part of the
Adobe Type Library is the Adobe Originals™ series, which features creative
new designs and definitive revivals of classic styles. This series also
offers extended character sets in the text fonts, which bring a much richer
complement of characters to help users communicate better.

Type 1 format font programs offer many advantages to both users and
software developers. A Type 1 font program describes character shapes with
mathematically expressed curves and straight lines. The resulting outline font
is much more versatile than a bitmap format font. One outline description
of a typeface can be scaled to any point size, rotated to any angle, or used for
a variety of other transformations (see Figure 3). The advantage is not only
the accuracy and ease of doing this, but also that only one copy of a font need
be stored on a disk, instead of one font for each size and orientation.

4 Supporting Fonts in the PostScript Language Environment (31 Mar 92)

Type 1 font programs contain information, calledhints, that aid the
PostScript interpreter in rendering characters for all sizes and resolutions.
The hinting method of the Type 1 format is relatively simple: Most hints
are declarative statements stating where key features of a character are
located. The intelligence for adjusting those features to look correct at any
resolution, and to account for the artifacts of raster devices, exists in the inter-
preter. Consequently, the resulting fonts are of minimal size and are capable
of improvement as interpreter algorithms improve.

Most typefaces in any type library are proportionally spaced type designs.
Compared to monospaced faces, proportional space fonts are more legible,
have a much broader variety of styles, and save a significant amount of space
(see Figure 2). However, they require the application to do more work to
access the metrics file and keep track of line widths.

Figure 2 Monospaced Courier and proportionally spaced Times* Roman

In addition to the Type 1 downloadable font programs sold by Adobe
Systems, fonts can exist in several forms and locations within a user’s
system. Printer manufacturers usually bundle a core set of fonts with their
printer; they reside in the printer's ROM, in a cartridge, or on an internal
hard disk. The advantage of fonts residing in the output device is that they do
not need to be downloaded from the host computer to the printer, which
can save a significant amount of time. Cartridge and Disk fonts are classified
as Type 4 and 5 fonts, respectively, but are similar to the Type 1 font format
except for file organization.

The Adobe composite font language extensions provide for a hierarchical
structure of fonts that removes the Type 1 font restriction that only 255
characters can be encoded. This capability is important for Asian ideographic
scripts such as Kanji, and can be useful for latin font vendors who wish to
provide larger character sets. Composite fonts are classified as Type 0, and
are supported by PostScript Japanese printers and by all PostScript Level 2
printers.

Typography
Courier 24 point

Typography
Times-Roman 24 point

2 The PostScript Language Font Solution 5

2.3 Multiple Master Type 1 Font Programs

Adobe’s multiple master font technology is an extension of the Type 1 font
format. These fonts contain two or more complete sets of character outlines,
bound in a single font program, from which any number of intermediate
instances of the font can be generated. A derived instance of a font requires
only a small data structure because the character outlines are shared with the
main multiple master font program. This minimizes the storage space needed
to generate variations once the basic font program is installed.

Adobe Systems will provide multiple master versions of selected typefaces,
including support for multiple master technology in printers, support in appli-
cation products, and a utility to generate individual fonts derived from the
master designs. The derived instances of a typeface are installable in existing
applications, and each multiple master font package includes code that makes
it backward compatible with installed interpreters.

Typically, a font program provides master designs for light and bold, as well
as condensed and expanded typefaces. Users can then generate instances of
styles, such as 70% of the boldest style and 55% of the most expanded
design. Figure 3 shows the four outline master designs for the letter B (in
outline at the four corners) from a multiple master font program. The inter-
mediate characters are instances generated by interpolating between the
master designs.

Figure 3 Outline masters for the letter B from a multiple master font
program

This technology not only gives users greater flexibility and power, but also
enables applications to offer the following enhanced features.

• Layout programs create custom-width fonts to help solve text-column
justification problems.

Light

Black

Condensed Extended
width

w
ei

g
h

t

6 Supporting Fonts in the PostScript Language Environment (31 Mar 92)

• Spreadsheet applications generate custom instances of fonts to do a better
job of fitting text into constrained areas.

• Graphic designers create logotypes and advertising designs based on
transformations and flexibility.

Another benefit of multiple master font programs is the ability to generate a
version of a character that is optically correct for the size at which it will be
viewed. In the age of metal type, character design and spacing were adjusted
for the point size of the font. Smaller size fonts typically had proportionally
wider spacing, heavier stems and serifs, and less contrast between thick and
thin strokes than larger size fonts.

This capability was pretty much lost with photo and digital type technologies,
but with the new multiple master technology, typefaces can be rendered
optically correct for all sizes. To accomplish this, the multiple master font
program must contain one set of outlines designed for use at small sizes
and one for use at large sizes.

A multiple master font program can also emulate another typeface if that
font’s metrics are available. Previously, attempts at substituting or scaling one
font to match another usually resulted in unsatisfactory results. A specially
designed multiple master font can be scaled to match the metrics of another
font in a way that preserves consistent stem widths and spacing characteris-
tics, thus preserving legibility in a manner not previously possible. Font sub-
stitution can allow users to open a document for which the referenced fonts
are not available, and still get high quality typography when viewing or print-
ing that document.

3 Adobe Type 1 Font Packages

Type 1 downloadable font programs are available from a wide variety of
sources, including Adobe Systems. These fonts can be installed on the host
computer for screen display and for downloading to a printer. They can be
downloaded for either a single-print job, semi-permanently (to be RAM
resident until the next power cycle), or permanently to a hard disk.

A typical package of downloadable font programs contains:

• One outline font file for each style in the font family

• Screen font files

• One Adobe Font Metrics (AFM) file for each font

3 Adobe Type 1 Font Packages 7

• Font utilities: including a PostScript language font and file downloader, an
installation utility, and font conversion software. Adobe font packages for
the PC include Font Foundry™, which builds .PFM (font metrics file for
Windows) files, and bitmapped screen fonts for use with Hewlett-Packard
LaserJet® printers.

The outline font file is in a compressed binary format specific to the intended
platform. Font programs can be transferred to other platforms, but Adobe
recommends that users obtain the same font in the format for the other
platform to ease installation and conversion problems and to ensure that the
user has both proper documentation and character set and keyboard mapping
information. Copies of font programs in alternate formats are offered to regis-
tered owners of those fonts for approximately the cost of producing the pack-
age.

The screen font files are also in the format required by the platform, although
they are no longer shipped with PC font packages. Either the user uses ATM
software to generate the screen display for Windows or OS/2, or the Font
Foundry utility generates bitmap screen fonts for MS-DOS and specific
applications and printers that require bitmap fonts. Macintosh packages
include a reduced set of screen fonts; at least one size of these screen fonts
must be installed, because the font metrics are available in the screen font
suitcase file.

Font metrics files specify character widths that are used for calculating line
widths and text placement. They also specify kerning and ligature substitu-
tion data, as well as character bounding boxes that can be used for placing
accents and determination of clipping regions.

The primary use for metrics is to format text for the screen or printer.
For monospaced fonts that emulate typewriter fonts, each character has the
same width. With proportionally spaced fonts, each character can have a
different width in proportion to its particular design. This results in better
quality typography that is easier to read, and the resulting text requires as
little as 70% of the space required by a monospaced typeface.

Font metrics are specified for Type 1 fonts in an Adobe Font Metrics (AFM)
file. Every style of a font family has a corresponding AFM file. Additional
forms of the font metrics might be required and included in the font package,
depending on the platform on which the font programs are to be used. For
example, a Printer Font Metrics (PFM) file is required for the Windows
environment and for the Macintosh environment (where AFM files are rarely
used). Metrics for the entire font family are contained in the FOND resource
data structure.

8 Supporting Fonts in the PostScript Language Environment (31 Mar 92)

4 Font Installation

Font installation generally consists of the user running an installation utility
that puts font and metrics files in the appropriate directory. The system might
not keep track of installed fonts to provide applications with system calls that
can return lists of available fonts for getting font names and presenting font
menus.

The essential items an application needs to obtain, either from the system or
by itself, are the font name, the location of the screen and printer font file, and
the location of the font metrics file. For example, in a MS-DOS® system, font
files are deposited in the C:\PSFONTS directory and AFM files in the
C:\PSMETRICS directory. An application must parse the AFM files in this
directory to get the PostScript language font name.

With the Windows and Macintosh environments, the system provides calls
for obtaining lists of available fonts, which makes the process easier. Both
systems also have standard locations in which the font and metrics files
should reside.

5 User Interface: Font and Style Selection

A user selects fonts from within an application by accessing a font menu.
Generally, system calls return the selection of available fonts (the fonts
available to the user by virtue of having been installed in the system) to the
application. The font itself can reside on the host computer or a font server,
or be resident in the ROM, hard disk, or cartridge of the output device.

5.1 Font Names

Font programs are referenced by the name of the font as defined by the
FontName in the PostScript language font dictionary. When the font is
installed in a PostScript language output device, this name is registered
in the global font dictionaryFontDirectory .

TheFontName remains constant regardless of the platform for which it is
intended. Any given operating system might keep track of a font by another
name. For example, on the Macintosh, the system registers the name of the
Font Resource, which is often not the same as theFontName .

Font file names are dependent on the limitations of the platform. For
example, with a MS-DOS system on the PC, file names are limited to 8 char-
acters (plus a 3 character extension). Because of the need to represent the
style (for example, bold italic), the point size (for bitmap screen fonts), and
the device code, the current Adobe convention is to use only the first 2

5 User Interface: Font and Style Selection 9

characters of the 8 to designate the font family name. On the Macintosh
platform, up to 29 characters are allowed (limited, for compatibility reasons,
by a bug in an early Apple LaserWriter®).

5.2 Font Style Selection

Although some typefaces designed to be used mainly for headlines and
display consist of a single style, most typefaces consist of a family of styles
related by common design characteristics. For example, a typeface package
with a family name such as Garamond, can have a family that consists of
Garamond Roman, Garamond Italic, Garamond Bold, and Garamond Bold
Italic. Using different typeface, a family is a good way of creating a specific
style for a document and adapting that style for different design purposes.
Use different styles within a family to articulate and organize various parts
of a document, for example, bold for headings and italic for emphasis or
differentiation, or to create contrast and variety. Applications need to support
this wide variety of typographic style variations as well as provide a good
user interface for viewing and selecting the various options.

A large typographic family can consist of seven or eight weights. It can come
in widths ranging from ultra-condensed to ultra-expanded. It can also have
a roman (upright) and a true italic face (that is, of a cursive design, not an
oblique version algorithmically derived from the roman).

Font name and style menu windows should not restrict either the number of
variations of a family that can be viewed, nor should the menus limit the
length of font names that can be viewed. This is important because in some
environments the font name itself is the primary means for users to see which
styles are available, and font names are often quite long. For example, a
PostScript languageFontName might be

ITCNewCenturySchoolbook-CondensedBoldItalic

where ITC® is the registered trademark name of the vendor who licenses the
design, New Century Schoolbook is the typeface family name, and the names
following the hyphen describe the style variations.

A preferred way to present font names and style variations is by using a hier-
archical menu. Users initially see a menu of alphabetized family names.
When a family is selected, the next level menu containing styles appears.

An example of this approach is Adobe Type Reunion™ for the Macintosh,
shown in Figure 4. The Macintosh system tracks fonts by a string in the
screen font data structure, which is the Resource name. Adobe Type Reunion
looks into this data structure to get the PostScript language font name in the
Family Style Mapping table to more easily classify the font by family name
and style.

10 Supporting Fonts in the PostScript Language Environment (31 Mar 92)

Figure 4 Font selection menu generated by Adobe Type Reunion

In Figure 4, the first level menu lists family names, and the second level
shows the installed style variations of that family. By using a second level
menu in this way, font variations can be shown to the user instead of
assuming the common variations of roman, italic, bold, and bold italic.

Font and style references should be stored as separate but linked properties.
Applications can then allow users to select text and change the font family
without changing the style selection. For example, if a paragraph contains
one or more italicized words, the user should be able to select a paragraph
and change the typeface family used for the whole paragraph, while leaving
the style characteristics, such as italic and bold, unchanged.

5.3 Derived Styles and Alternate Characters

An outline font can be mathematically transformed to create a wide variety
of alternate styles, as is done in the Macintosh system. Examples of style
variations that can be generated from a single roman font include: bold,
oblique, horizontally scaled (for fitting text or generating algorithmically
condensed and expanded forms), underlined and strike-through text, small
capitals, superior and inferior characters, and outline characters.

Algorithmic generation of these styles can be useful for extending the choice
of styles when there are constraints on memory or disk space. Ideally, how-
ever, the true designed form of a character should be substituted wherever
possible. This is valuable to the user because a smaller form of a character,
such as a superscript figure, does not look optically correct if it is the full
figure scaled to a smaller size. Similarly, small caps are designed to be
slightly heavier and wider than a full size capital letter scaled to a smaller
size. True designed condensed and expanded typefaces are better propor-
tioned than the horizontally scaled characters in the condensed and expanded
examples shown in Figure 5.

5 User Interface: Font and Style Selection 11

Figure 5 Styles derived algorithmically from a single outline character

For example, an application might have a dialog window allowing the
user to specify that a selected number should be a superscript character. The
application can determine whether there is an Expert set equivalent of the
character and substitute it, rather than requiring the user to change fonts. This
feature can be offered for menu selections of small capitals, superscript, and
subscript characters available in the Expert fonts. The application can simi-
larly switch fonts for bold and italic variations, for which most font families
have true designed fonts.

Figure 6 Additional derived styles

Underline Strike-through Superscript Subscript

Figure 6 shows examples of text styles an application can support. Underline
and strike-through styles can be generated by drawing lines with PostScript
language drawing operators. AFM files provide information on the position
and line weight to use for underlining—the position depends on the design of
the particular typeface, and the line weight on the character stroke weights.

Small caps, superscripts, and subscripts are examples of characters that
appear to be scaled-down versions of the full-sized character. However, to be
typographically correct, these characters should be designed to match the
color (the relative boldness) of the other characters in the font, and not just
algorithmically scaled from the full-size characters. Adobe font programs
with the standard Roman character set (defined in Table E.7 of thePostScript
Language Reference Manual, Second Edition) contain three superior figures
1, 2, and 3, but best results are obtained by fully supporting the Adobe Expert
character sets. (See section 9.2.)

R
Filled Outline

R
Oblique

R
Rotated Skewed

R
R
Condensed

R
Expanded Shadow

R R
Filled with
gray

Filled with
outline

Derived Styles 2483 n6

12 Supporting Fonts in the PostScript Language Environment (31 Mar 92)

6 Screen Display

Text can be displayed in two ways: Either as a character-based display, where
the screen display does not exactly represent the printed form or in a
WYSIWYG mode. The appropriate approach depends on the application;
either can yield good results if handled correctly.

6.1 Character-Based Mode

In character-based mode, a generic font is used to display mainly the content
of the text, without attempting to show styles and line and page breaks as they
would appear as printed. Although this mode might not be as easy to use as a
WYSIWYG system, it need not limit the final quality of a document. High-
end typesetting applications have traditionally used this approach to give the
user more power and flexibility without requiring as much overhead for the
user-interface. However, care must be taken to make the user interface as
friendly and as easy to use as possible.

A single size of a bitmapped screen font is generally used for screen display.
The display font can be monospaced or proportionally spaced as long as the
typeface family name, style variations, and point size are indicated and user-
selectable in a properties specification table or menu. One good way to
present these properties to the user is to embed mark-up language text into
the text of the document. Any manner of differentiating the two texts
simplifies the user's job, for example, by using a different color of the font,
as was done by the old version of WordPerfect™ for MS-DOS.

6.2 WYSIWYG Mode

With a WYSIWYG approach, ease of implementation can depend on the
level of system support for the display of matching screen and printer fonts.
This generally requires more development effort and results in a larger size
application. It can also mean that the application is less portable because of
the heavy use of graphics in the user interface, but these drawbacks can be
justified by the enhanced productivity offered to the user.

To achieve WYSIWYG display and printing, an application must use screen
fonts that match the metrics of the printer font. This means that character
cell widths are equal to the fractional width of the outline character, rounded
to the nearest integer number of pixels. Additionally, there must be a file
containing the fractional widths, which are used for positioning text on the
screen and for determining line and page breaks of the printer font outline
characters. These widths can be either in the screen font file data structure,
such as for a Macintosh, in the .PFM file in a Windows 3.0 environment, or
can be obtained from the AFM file supplied with each font.

7 Preparing a Document for Printing 13

Screen display is accomplished by making a system call to display text on the
screen (in systems where this is available). For platforms where the ATM
software is available and installed, the call will be intercepted by the ATM
software, which will display the characters as rasterized from the outline font.
By formatting the final PostScript language document using the fractional
widths from the metrics file, the printed document will have the same layout
as the screen display.

7 Preparing a Document for Printing

Managing font resources for printing a document involves

• determining which referenced fonts are available in the printer

• using the document structuring conventions (DSC) to specify font usage

An application can query a device to determine which fonts are in ROM or
cartridge, on the hard disk, or previously downloaded. (Querying is not possi-
ble with parallel connections or networks with dumb print spoolers.)

The PostScript printer description (PPD) file defines the font programs
installed in a device. The installation utility can modify the PPD file, or the
system software or application can keep track of the fonts to reflect any
subsequent additions of a font cartridge or fonts to the hard disk.

To specify font usage, PostScript language documents should use comment
lines that conform to the DSC. (See the specification in Appendix G of the
PostScript Language Reference Manual, Second Edition.)

It is essential for an application to determine which fonts are available in the
printer so they do not need to be downloaded. A downloaded font can occupy
25 to 50 kilobytes of memory and require 10 seconds or more to transfer the
file for an average font. Hence, it is important to use theseconventions for all
documents created by an application to avoid unnecessary downloading and
to help print spoolers and print managers optimize printing.

All font programs referenced by an application should be listed in the docu-
ment using two DSC comments. Fonts referenced in the document and
included in the document file should be listed using the following comment
line.

%%DocumentSuppliedResources: < font name list >

Font names referenced but not included in the document file should be listed
using the following comment line.

%%DocumentNeededResources: < font name list >

14 Supporting Fonts in the PostScript Language Environment (31 Mar 92)

This list of font names would include both those that the application knows
to be ROM or cartridge resident, as well as other font files that the Print
Manager must supply (possibly from a font server), or the user must
download.

Font changing should be optimized to aid performance because a document
can have a large number of font changes on any given page. Font dictionaries
and even scaled font dictionaries should be cached to save significant time.

8 Font Downloading and Printing

Once the application determines which fonts it will download or embed
in-line, the corresponding disk file must be located.

As explained in section 4, “Font Installation,” an MS-DOS application must
parse the AFM files in the C:\PSMETRICS directory for the PostScript
language font name to reference in the document; the downloadable font file
can then be found by using a .PFB extension and the same name as the AFM
file name but in the C:\PSFONTS directory.

On the Macintosh, file names are derived from the PostScript language font
name, using uppercase letters and hyphens to aid parsing. The first five letters
of the first name are used, followed by the first three letters of any subsequent
name components.

A font program can be downloaded prior to sending the document to the
interpreter (this is called a pre-loaded font). Alternatively, it can be inserted
into the document itself (this is called an in-line font).

Files stored on a disk on either a Macintosh or PC system are in a platform-
dependent compressed binary format that must be converted into hexadeci-
mal representation and transmitted in a 7-bit ASCII hexadecimal format to
the PostScript interpreter.

The issues involved in managing printer memory and the downloading of
fonts are explained in Adobe Technical Note #5048, “Overview of the
Generic Text Interface.”

9 Character Sets 15

9 Character Sets

Most operating systems have their own standard character sets which is sup-
ported for all applications. These character sets are different for each system,
and for each application in the case of DOS where there is no standard char-
acter set. To support this variety of character sets and encodings, the Post-
Scriptlanguage uses a flexible font encoding scheme for linking characters to
keyboard codes.

In the Macintosh and Windows environments, the standard character sets are
handled by system level PostScript printer drivers. The result is that applica-
tions are not free to re-encode fonts to make use of characters which may be
in a font but which are not supported by the system.

In a DOS environment, there is no system level support for fonts in general,
and hence there are no standard character sets. There also is no system Post-
Script driver, and each application supplies its own driver. The result is that
developers have to do more work to support PostScript output, but they can
also provide more flexibility in what characters can be supported. This
allows great flexibility for specifying either ASCII or EBCDIC encodings or
any other encodings required by the user or system. References to re-encod-
ing in the following sections apply mainly to environments where the appli-
cation has the freedom to do their own re-encoding.

9.1 Font Re-Encoding

The basic process of re-encoding a font involves making a copy of the font
dictionary, replacing the encoding vector in the copied font with a new one,
and executing a PostScript language operator to register the new font in
FontDirectory . The resulting font program is given a new name, which can
then be referenced by a PostScript language document.

When re-encoding, either characters can be added to unused places in the
array, or the entire encoding array can be redefined. Examples of re-encoding
and discussion of techniques can be found in Technical Note #5125, “Roman
Font Re-Encoding Issues.”

In the case of the PC and Macintosh, a font withStandardEncoding gets
 re-encoded by the application or system driver to either the MS-DOS,
Windows, or Macintosh character set. For the Macintosh, for example, there
is a flag set in the screen font data structure that tells the driver that the
font uses theStandardEncoding and should, therefore, be re-encoded to the
Macintosh character set. When the font is used by either ATM or the system’s
PostScript driver, the Macintosh character set is built from
a combination of the current font and the Symbol font. In the case of the
Symbol font and non-standard character sets, a flag is set that tells the driver
not to re-encode the font because there is a font-specific encoding vector.

16 Supporting Fonts in the PostScript Language Environment (31 Mar 92)

9.2 Adobe Character Sets and Encodings

A character set (or glyph complement) refers to the set of all characters
included in a PostScript language font program. Not all characters in the font
program are encoded or accessible from all applications.

An encoding vector is a PostScript language array that maps character
codes (used as indices to the array) to PostScript language character names.
These font programs use an encoding whose PostScript language name is
StandardEncoding (shown in Table E.6 of thePostScript Language
Reference Manual, Second Edition), which encodes 149 of the characters.

Most text typefaces in the Adobe Type Library use the standard Roman
character set, which contains 228 characters. There is also an
ISOLatin1Encoding vector defined in all PostScript interpreters that encodes
205 characters, including 53 accented characters.

Typefaces that are considered display faces and used mainly for headlines
and in advertising have a character set called the Display Character Set (such
as the one used for Charlemagne™, Cottonwood™, and other typefaces).
This character set is a subset of the standard Roman character set because
many characters, such as superior figures, fractions, and math and paragraph
symbols, are not used frequently for headlines.

A Type 1 font program can contain any number of characters, but only 255
characters can be encoded at one time. For example, an Adobe font package
such as Prestige Elite contains 358 characters, but only 255 of them can be
encoded at one time.

9.3 PC Character Sets

Three Adobe font packages, Prestige Elite, Letter Gothic, and Orator, contain
the IBM® extended character set, which includes line-drawing characters and
a variety of additional symbols. These fonts contain 358 characters, of which
only the characters in theStandardEncoding set are encoded. Therefore,
users can only access these characters if the application supports re-encoding
the font. Other typefaces packaged for use in the PC environment utilize the
same character set as their Macintosh equivalent, such as the standard Roman
character set for most text faces.

9 Character Sets 17

9.4 Expert Set and Symbol Fonts

Adobe also offers Expert Set font packages as part of the Adobe Originals
series, which features original typeface designs as well as revivals of classic
typefaces. This series uses extended character sets for text typefaces.

Using Adobe Garamond™ as an example, the standard font program contains
the same character set and encoding as other font packages. An additional
font program called Adobe Garamond Expert contains characters such as
small caps, old-style figures, additional ligatures, and a variety of other
characters regularly used for many publishing and design applications. The
Expert font has its own font-specific encoding, which is defined in
Appendix E of thePostScript Language Reference Manual, Second Edition.

A number of other font programs contain font-specific encoding vectors;
examples include Symbol, Carta™, and Sonata™ as well as other math
and symbol fonts. The fact that the font program has a font-specific encoding
vector — is specified, for example on the Macintosh, in the screen font
data structure. This signals the application and driver that the font is not
to be re-encoded in the standard way.

9.5 Accented Characters

A common user need is to be able to access the accented characters that are
included in most fonts but are not encoded. These characters are particularly
important in Europe and other parts of the world, but are frequently requested
by domestic U.S. users using foreign words and phrases or publishing
translated text.

There are several approaches to supporting accented characters:

• If the system’s character set includes accented characters (such as the 36
available in the Macintosh environment), the application does not need to
do anything extra to support those specific characters.

• To provide characters not in the system’s character set, the application
should determine whether the desired character(s) is among the 58
unencoded accented characters in the standard Roman character set, and
whether the font has this character set. A DOS-based application can then
re-encode the font to include the accented characters. The advantage of
using these characters is that the placement of the accent has been done by
type designers as opposed to being algorithmically composed.

Note Early versions of the PostScript interpreter required both components and the
composite character to be encoded in the font; more recent versions require
only the composite character to be encoded.

18 Supporting Fonts in the PostScript Language Environment (31 Mar 92)

• The application can compose additional accented characters not included
in the font. In this case, the base alphabetic character is imaged in the line
of text and the position where the next character would appear is saved
using the PostScript language commandgsave . Then the floating accent is
positioned over the base character, using the character bounding boxes
from the font metrics file, and then the previous position (for the next char-
acter) is restored usinggrestore and the text imaging continues.

Such algorithmic positioning of floating accents may not result in typo-
graphically correct text, but is better than not supporting accented charac-
ters at all. A nice refinement is for the application to allow the user to
adjust the position of the accent and record this offset for future uses in a
data table that resides in the application.

19

Appendix: Changes Since
Earlier Versions

Changes since August 11, 1991

• Document was reformatted in the new document layout and minor edito-
rial changes were made.

Changes since May 4, 1991 version

• Section 9.1: Changed the reference from thePostScript Language Tutorial
and Cookbook to the Technical Note #5125, “Roman Font Re-Encoding
Issues.”

20 Appendix: Changes Since Earlier Versions (31 Mar 92)

21

Index

A

Adobe Font Metrics 7
Adobe Type Library 3
Adobe Type Manager.SeeATM

software
Adobe Type Reunion 10
ATM software

display and printing 2–3

C

C:\PSFONTS 8
C:\PSMETRICS 8
character sets ??–18

Adobe 16
PC 16
standard Roman 16

characters
accented 17

composite font language extension 4

E

encoding vector
font-specific 15

F

Font Foundry utility 7
font solution

Post Script language 1–6
FontDirectory 8
FontName 8
fonts

installation 8
supporting in PostScript 1–18

character-based mode 12
downloading and printing 14

Expert Set font package 17
mark-up language 12
printing 13
querying 13
re-encoding 15
screen display 12
symbol fonts 17

G

gsave 18

H

hints 4

I

in-line font 14
installation

fonts 8
ISOLatin1Encoding 16

M

Multiple Master
font technology 5–6
outline masters 5

P

.PFB extension 14

.PFM file 12
PostScript printer description file. See

PPD file
PPD file 13
pre-loaded font 14
Printer Font Metrics 7

22 Index (31 Mar 92)

R

rasterization 2

S

StandardEncoding 15, 16

T

Type 1 font 3–4
font metrics file 7
font program 3
hints 4
metrics 7
Multiple Master 5
outline font file 7
packages 6
screen font file 7

U

user interface
alternate characters 10–11
derived styles 11
font and style selection 8–11
font style selection 9–10
selection menu

font 10
style variations 10–11
styles

algorithmic generation 10

W

WYSIWYG 2, 12

	Contents
	List of Figures v Supporting Fonts in the
	Introduction
	The PostScript Language Font Solution
	Adobe Type Manager Software for Display and Printing
	The Type 1 Font Format and the Adobe
	Multiple Master Type 1 Font Programs

	Adobe Type 1 Font Packages
	Font Installation
	User Interface: Font and Style Selection
	Font Names
	Font Style Selection
	Derived Styles and Alternate Characters

	Screen Display
	Character-Based Mode
	WYSIWYG Mode

	Preparing a Document for Printing
	Font Downloading and Printing
	Character Sets
	Font Re-Encoding
	Adobe Character Sets and Encodings
	PC Character Sets
	Expert Set and Symbol Fonts
	Accented Characters

	Appendix: Changes Since Earlier Versions
	Index
	List of Figures ATM software generated characters for
	Monospaced Courier and proportionally spaced Times *Roman
	Outline masters for the letter B from a
	Font selection menu generated by Adobe Type Reunion
	Styles derived algorithmically from a single outline character
	Additional derived styles

