

Adobe CMap and CIDFont
Files Specification

Version 1.0

11 June 1993

Adobe Developer Support

PN LPS5014

Adobe Systems Incorporated

Corporate Headquarters
345 Park Avenue
San Jose, CA 95110
(408) 536-6000 Main Number
(408) 537-6000 Fax

European Engineering Support Group
Adobe Systems Benelux B.V.
P.O. Box 22750
1100 DG Amsterdam
The Netherlands
+31-20-6511 355
Fax: +31-20-6511 313

Adobe Systems Eastern Region
24 New England
Executive Park
Burlington, MA 01803
(617) 273-2120
Fax: (617) 273-2336

Adobe Systems Co., Ltd.
Gate City Ohsaki East Tower
1-11-2 Ohsaki, Shinagawa-ku
Tokyo 141-0032
Japan
+81-3-5740-2620
Fax: +81-3-5740-2621

®

® ®

© 1993 Adobe Systems, Incorporated. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
written consent of the publisher. Any software referred to herein is furnished under license and may
only be used or copied in accordance with the terms of such license.

PostScript is a trademark of Adobe Systems Incorporated. All instances of the name PostScript in the
text are references to the PostScript language as defined by Adobe Systems Incorporated unless oth-
erwise stated. The name PostScript also is used as a product trademark for Adobe Systems’ implemen-
tation of the PostScript language interpreter.

Any references to a “PostScript printer,” a “PostScript file,” or a “PostScript driver” refer to printers,
files, and driver programs (respectively) which are written in or support the PostScript language. The
sentences in this book that use “PostScript language” as an adjective phrase are so constructed to rein-
force that the name refers to the standard language definition as set forth by Adobe Systems Incorpo-
rated.

PostScript, the PostScript logo, Display PostScript, Adobe, the Adobe logo, Adobe Type Manager,
Adobe Type Manager-Japanese Edition, ATM, Display PostScript, and Poetica are trademarks of
Adobe Systems Incorporated registered in the U.S.A. and in other jurisdictions. FutoGoB101,
FutoMinA101, Jun101, Ryumin Light KL, Gothic BBB Medium, and Skiksei Kaisho CBSK1 are
trademarks of Morisawa and Company, Ltd. Apple and Macintosh are registered trademarks of Apple
Computer, Inc. Fujistu is a registered trademark of Fujitsu Limited. NEC is a registered trademark of
NEC Information Systems, Inc. Other brand or product names are the trademarks or registered trade-
marks of their respective holders.

This publication and the information herein is furnished AS IS, is subject to change without notice, and
should not be construed as a commitment by Adobe Systems Incorporated. Adobe Systems Incorpo-
rated assumes no responsibility or liability for any errors or inaccuracies, makes no warranty of any
kind (express, implied or statutory) with respect to this publication, and expressly disclaims any and
all warranties of merchantability, fitness for particular purposes and noninfringement of third party
rights.

iii

Contents

List of Figures

 v

List of Tables

 vii

Adobe CMap and CIDFont Files Specification

 9

1 Introduction 9
Compatibility 9
Copyrights for CID-Keyed Font Programs 10
Overview 10

2 CMap and CIDFont Resource Architecture 11
Terminology 11
Native Support Versus Compatibility Mode 12
The Character Collection 13
Version Control 13
The CIDFont File 14
The CMap File 14

3 CIDFont Tutorial 16
CIDFont File Components 16
CIDFont Example 18

4 CIDFont Reference 34
CIDFont Organization 34
CIDFont Resource Keys 35
Defining the CIDFont Resource 39

5 CMap Tutorial 41
CMap File Components 42
First Example: Stand-Alone CMap File 42
Closing the CMap File and Creating the Resource Instance 53
Second Example: A CMap File That Uses Another 54

6 Rearranged Font Tutorial 57
Rearranged Font Components 57
Rearranged Font Example 58

7 CMap Reference 67
CMap File Nomenclature and Lexical Elements 68
Operator Summary 70
CMap File Overview 71

iv Contents (11 June 93)

Operator Details 71

Installing CID-Keyed Fonts
on PostScript Interpreters

 81

ATM-J Compatibility
for CID-Keyed Fonts

 93

Obtaining
CID Information

 97

Index

 99

v

List of Figures

Figure 1 Character Codes to CIDs and Glyphs 15
Figure 2 CIDMap, FDArray, and charstring data 18
Figure 3 Internal organization of the CIDMapOffset string 28
Figure 4 Empty intervals 30
Figure 5 Relationship of SubrMap to subroutine data length 33
Figure 6 Codespace ranges for the 83pv-RKSJ-H charset encoding 50

vi List of Figures (11 June 93)

vii

List of Tables

Table 1 Relationship of input code to selector 69
Table 2 PostScript language lexical elements 69

viii List of Tables (11 June 93)

9

Adobe CMap and CIDFont
Files Specification

1 Introduction

Character codes and character names are both widely used in PostScript™
language programs to access font glyphs. This document introduces another
character-access type, the

character identifier

, abbreviated as

 CID

. This doc-
ument explains what a CID is, and describes the files that use CIDs. These
files are used together to produce a font called a

CID-keyed font

, so named
because the glyphs are accessed by CID.

This section describes the compatibility issues for CID-keyed fonts, explains
that CID-keyed fonts are copyrightable, and provides an overview for the rest
of the document. After reading this section, you should be ready to start
learning about CID-keyed font files and how they are used.

1.1 Compatibility

The PostScript™ interpreter has undergone continual enhancement since its
debut in late 1984. During this time, Adobe Systems has changed both the
PostScript interpreter implementation and the features of font formats. These
changes are generally compatible with all versions of the PostScript inter-
preter. Features introduced by this specification are likewise compatible.

There are several parts of this document dealing with compatibility concerns.
In particular, Appendix A, “Installing CID-Keyed fonts on PostScript Inter-
preters,” describes how CID-keyed font files are installed for use with both
embedded interpreters such as those found in printers and imagesetters, as
well as with host-based interpreters such as DPS

(Display PostScript) and
CPSI (Configurable PostScript Interpreter). Appendix B, “ATM™-J Compat-
ibility with CID-Keyed Fonts,

”

describes how CID-keyed font files are
installed for use with the Adobe Type Manager™ product, Japanese edition.

Any future extensions to Adobe™ CID-keyed font files will be designed so
that those extensions can be ignored by the current generation of interpreters.
New extensions will often take the form of new dictionary entries; other
extensions may define additional procedures. As long as interpreters for CID-

10 Adobe CMap and CIDFont Files Specification (11 June 93)

keyed font software are written to ignore such possible future extensions, cor-
rect font interpretation will result. Future extensions will be thoroughly
described in revisions of this document.

Some CID-keyed font rendering software (such as ATM-J) takes advantage
of a particular stylized use of the PostScript language. As a result, CID-keyed
font files must also adhere to these PostScript language usage conventions.
The syntax resulting from these conventions is considerably more restricted
than that of the PostScript language; CID-keyed fonts can be read and exe-
cuted by PostScript interpreters, but not all PostScript language usage is
acceptable in CID-keyed fonts. These restrictions will be noted wherever
necessary in this document, particularly in Appendices A and B.

1.2 Copyrights for CID-Keyed Font Programs

Because CID-keyed fonts are computer programs, they are copyrightable to
the same extent as other computer software. The ideas expressed by copy-
righted works are not protected; however, the particular expression is. In the
case of CID-keyed font programs, this means that while the typeface shapes
are not protected, the program text is.

Unauthorized duplication of a CID-keyed font program is a violation of
copyright law. Such unauthorized activities include verbatim copying and
distribution, as well as less obvious activities such as modification and trans-
lation of the program from one form or format into another.

Adobe Systems’ CID-keyed font programs are licensed for use on one or
more devices (depending on the terms of the particular license). These
licenses generally permit the use of a licensed program in a system that trans-
lates a CID-keyed font program into some other format in the process of ren-
dering, as long as a copy of the program (even in translated form) is not
produced.

The personal computer industry and its customers have benefitted greatly
from copyright protection. Copyright protection gives the developer of a
CID-keyed font program the incentive to create excellent typeface programs.
In turn, the user of CID-keyed font programs can expect to have available the
finest typeface software to choose from.

1.3 Overview

The remaining chapters of this document summarize the various components
of a CID-keyed font and how they work together.

• Section 2 provides an overview of the CID-keyed font architecture.

• Section 3 explains how the component CIDFont is put together.

2 CMap and CIDFont Resource Architecture 11

• Section 4 is a reference section of CIDFont operators and syntax.

• Section 5 discusses how the component CMap is built.

• Section 6 discusses producing rearranged fonts.

• Section 7 is a reference section of CMap operators and syntax.

• Appendix A provides details for installing CID-keyed fonts on PostScript
interpreters such as printers, CPSI, and DPS.

• Appendix B provides details for installing CID-keyed fonts on a host for
use with ATM-J.

• Appendix C provides information on getting a registry and vendor regis-
tration, unique IDs, and other useful technical notes from Adobe Devel-
oper Support.

2 CMap and CIDFont Resource Architecture

This section provides a conceptual overview of CMaps and CIDFonts. After
reading this section, you should understand the terms to be used in this docu-
ment and know what CMaps and CIDFonts are and how they interact.

2.1 Terminology

A

character

 is an abstract notion denoting a class of shapes declared to have
the same meaning or form. A

glyph

 is a specific instance of a character. For
example, consider the class of shapes named “ampersand” and “fi ligature”
along with a few instances of each class:

A

character collection

, another abstract notion, is a collection or group of
distinct characters. A

character identifier

, or

CID

, is a concrete notion in
which an integer is associated with a character from a character collection.
When the characters in a character collection are distinctly numbered with
CIDs from 0 to

n

 – 1 for a character collection of

n

 characters, the character
collection is called an

ordered character collection

.

Character Glyphs

Class of Shape

ampersand

fi ligature

Sample Instances of the Character

12 Adobe CMap and CIDFont Files Specification (11 June 93)

A

character code

 is that portion of a string used by

show

 (or other similar
operator) that corresponds to a character. A

CID-keyed font

 is a font program
that maps character codes to CIDs, and uses CIDs to access glyph data. There
are two parts to a CID-keyed font: a CMap resource and a CIDFont resource.
The CMap, or character code map, maps character codes to glyph selectors.
For CIDFonts, this selector is a CID. The CIDFont uses CIDs to access glyph
data. These components are used to access glyph data as the following dia-
gram depicts:

The CMap can also map character codes to two other glyph selector types.
The first is a character code and can occur when the font resource is other
than CIDFont. The second is a

character name

, a PostScript languag name
object that uniquely identifies a character, and can also occur when the font
resource is other than CIDFont.

Note that a CMap specifies a subset of a character collection to be used,
called a

character set

, or

charset

. In addition, the CMap imposes an encoding
on that subset. A font resource can be referenced by different CMaps, each of
which defines a different charset and encoding. Likewise, many font
resources can be referenced by a single CMap, accessing different glyphs for
the same character instantiated in each font resource.

2.2 Native Support Versus Compatibility Mode

This document introduces a new set of PostScript language commands (pro-
cedures or operators) that are defined in a procset resource. PostScript inter-
preters that have built-in support for these commands are considered to
provide

native-support

 for font programs that use them. Other PostScript
interpreters can be provided with PostScript language procedures that emu-
late the same outward behavior of these commands. These interpreters are
said to be operating in

compatibility mode

. At the time of this writing, com-
patibility mode supports only the CID glyph selector for CID-keyed font pro-
grams.

A

file

 is an external representation of a resource, such as a CMap program or
a CIDFont program, and is distinct from the internal virtual memory (

VM

)
representation that results when such a file is parsed by a font interpreter.

character code
CMap

resource

CIDFont

resource
glyph data

CID

2 CMap and CIDFont Resource Architecture 13

While both native-support interpreters and those operating in compatibility
mode use the same CMap and CIDFont files, the structures created in VM
may be very different. Native-support interpretation of CMap and CIDFont
resource files materialize more-or-less directly as dictionary objects in VM,
which the PostScript interpreter uses directly. In compatibility mode, execu-
tion of the CIDMap and CIDFont files results in the construction of a com-
posite font hierarchy, which bears little resemblance to the structure of the
CMap and CIDFont files and whose structure is undocumented. For more
information, read Appendix A,

Installing CID-Keyed Fonts on PostScript
Interpreters

.

2.3 The Character Collection

The first step in building CID-keyed fonts is to decide on the members of a
character collection, and impose an order on them. The CIDs that identify the
members of a character collection are used to order the collection. Hereafter,
assume

character collection

 means

ordered character collection.

Note A CID-keyed font must be based on one and only one character collection.
All CID-keyed fonts based on a particular character collection use

identical

CID index values to access corresponding glyph data.

The CID index value of 0 is always used to refer to the character meaning
“the undefined or ‘notdef’ character.” This CID is used when the CMap file
does not explicitly indicate a mapping for a character code.

2.4 Version Control

Both the CIDFont and the CMap must use CIDs from compatible character
collections. The identification of the character collection is accomplished by
placing version control information into each CIDFont and CMap file. To
identify a character collection uniquely, three components are needed:

• a

registry

 name is used to identify an issuer of orderings;

• an

ordering

 name is used to identify an ordered character collection; and,

• a

supplement

 number is used to indicate that the ordered character collec-
tion for a registry, ordering, and

previous

 supplement has been changed to
add

new

 characters assigned CIDs beginning with the next available CID.

These three pieces of information taken together uniquely identify a charac-
ter collection. In a CIDFont, this information declares what the character col-
lection is. In a CMap, this information specifies which character collection is
required for compatibility. A CMap is compatible with a CIDFont if the reg-
istry and ordering are the same. If the supplement numbers are different,

14 Adobe CMap and CIDFont Files Specification (11 June 93)

some codes may map to the CID index of 0. Details about how this version
information is specified and its impact on CIDFont and CMap files are found
in the sections that follow.

2.5 The CIDFont File

The CIDFont file contains glyph data that are indexed by CID. If the CIDFont
file is missing glyph data for a particular CID, the CID with an index value of
0 (which must have glyph data) is used.

The CIDFont file contains character instances, or glyphs. In the example
below, note that CID 7 refers to different shapes in the CIDFonts, but always
means “ampersand.” Likewise, CID 112 refers to another class of shapes, but
always means “fi ligature.”

2.6 The CMap File

The CMap file is used to determine which CID is referenced by a particular
character code. Many CMap files can be used with a CIDFont file. Each
CMap file specifies a particular subset of the character collection, the

charset

,
that it will use. Various subsets of a character collection may be wanted for
several reasons, for example:

• Different platform vendors have defined their own system-specific charac-
ter sets. By producing a character collection of the union of all character
sets, CID-keyed fonts are portable across different platforms.

• Variations of a font are needed. For example, in Japanese or Chinese text,
writing may be horizontal or vertical.

The following figure shows some character codes, the corresponding CIDs
that result when the character codes are translated by two CMaps, and the
glyphs associated with the CIDs for two CIDFonts.

Character CID CIDFont 1 CIDFont 2 CIDFont 3

7

112

ampersand

fi ligature

2 CMap and CIDFont Resource Architecture 15

Figure 1

Character Codes to CIDs and Glyphs

The row with character code <82A8> represents the most typical situation in
which two CMap files refer to the same data. Most CMap files for a character
collection differ in relatively few mappings of character codes to CIDs.

The row with character code <57> illustrates a difference between two CMap
files based on the platform. The CMap 1, 83pv-RKSJ-H, intended for use on
Macintosh platforms, uses proportionally spaced Roman characters, while
the CMap 2, Ext-RKSJ-V, intended for use on PC platforms, uses half-width
Roman characters.

The rows with character codes <8179> and <817A> illustrate where varia-
tions of a font are required. CMap 1 is used to access the horizontally written
characters from a font, while CMap 2 is used to access those that are written
vertically.

The rows with character codes <8D7B> and <E1E6> demonstrate how char-
acters are swapped depending on the platform. This typically occurs when
old-style characters are to be superseded, but the old-style characters are yet
to be maintained in the charset, though not in the primary character code
position. The row with character code <92CD> shows how characters can be
replaced.

Code

<82A8>

<57>

<8179>

<817A>

<8D7B>

<E1E6>

<92CD>

<81F6>

CMap 1
83pv-RKSJ-H

CMap 2
Ext-RKSJ-V

CID CIDCIDFont 1 and 2 CIDFont 1 and 2

851

56

690

691

2030

5853

3051

777

851

286

7915

7916

5853

2030

7747

0

16 Adobe CMap and CIDFont Files Specification (11 June 93)

The row with character code <81F6> demonstrates that CMap files can map
character codes to a notdef character. While in CMap 1 the character code
<81F6> maps to the “double dagger” character (CID 777 in the example), the
same character code maps to the default notdef character (CID 0) in CMap 2.
In both CIDFont examples shown, the default notdef character is the same as
the “full-width space” character, with glyphs consisting of horizontal dimen-
sion only. These CIDFonts could just as well have used any other glyph as
instances of the default notdef character.

Note For information on the the CMap files for the Japanese language group to
which specific characters map, obtain the document

CID-Keyed Japanese
Font Glyph Complement,

Adobe Technical Note #5078, as is listed in
Appendix C.

3 CIDFont Tutorial

This section describes CIDFont files from the perspective of the font devel-
oper who wishes to build a character collection in the form of a CIDFont file.
While several files comprise a complete CID-keyed font, font vendors prima-
rily interested in supporting the standard character sets and encodings of the
Japanese language group need only develop the CIDFont file.

After reading this section, you should be able to understand the example and
use it, along with other sections from this document, as a starting point to
construct different CIDFont files.

3.1 CIDFont File Components

As explained in section 2, a CIDFont file is a PostScript language font
resource specifically designed to accommodate a large collection of charac-
ters, and may have imposed on it diverse encoding requirements representing
one or more character sets within the collection.

CIDFont files

are like

 other PostScript font resources in the following ways:

• CIDFont files are PostScript language programs that adopt a restrictive
syntax—as is the case with Type 1 font programs.

• CIDFont files contain collections of traditional Type 1 or Type 3 character
descriptions and the hinting information needed to rasterize them.

• The CIDFont files have a font type. The fonts described in this document
are of

CIDFontType

 0. Other

CIDFontType

 designations are reserved.

• CIDFont files can be used from disk or ROM, or loaded into VM.

CIDFont resources

differ

 from other types of PostScript font resources in the
following ways:

3 CIDFont Tutorial 17

• Glyph data (also called

character descriptions

 or

charstring data

) in
CIDFonts are always referenced using character IDs.

• Encoding information is described in the CMap file—not in the character
collection.

Because the exact VM representation of CIDFonts and the mechanism by
which they are created and used may change over time, the CIDFont and
CMap file strategy outlined here intentionally separates font development
from the creation of composite font structures in VM. Composite font struc-
tures become a function of special operators and procsets supplied by Adobe;
the developer is freed to enhance the fonts themselves.

A CIDFont file consists of two parts. Part one is a PostScript language pro-
gram that defines a

CIDFont resource instance

. Part two is a collection of
glyph data along with some additional data. The underlying type of the
resource instance is a dictionary object.

Part two, the glyph data, either resides in a file system or in VM. The file
system can be disk-based, ROM-based, or cartridge-based; such forms vary
only in regard to performance issues. This document generally assumes a file
system format that is disk-based for glyph data, but other formats are possible
and even likely. Where important, differences from other formats are noted.

Figure 2 is a data flow diagram of the internal organization of a CIDFont. In
VM, the CMap resource produces a character ID for use by the CIDFont
resource. The character ID acts as an index into the

CIDMap

, which is in turn
used to locate other pieces of information. Each interval of the

CIDMap

 also
has two parts. The first part is an index into the

FDArray

, which is an array of
font dictionaries. The second part is an offset into the charstring data. Char-
string data, subroutine information (if any), and data from the appropriate
member of the

FDArray

 of font dictionaries, are required to rasterize a glyph.

18 Adobe CMap and CIDFont Files Specification (11 June 93)

Figure 2

 CIDMap, FDArray, and charstring data

3.2 CIDFont Example

This section presents a CIDFont example, including a font dictionary in the

FDArray

. The example is first given in full, and then is analyzed in detail in
the sections that follow. Where statements or data have been omitted, they are
replaced with explanatory text within brackets like this:

<< text here omitted >>

A CIDFont file is a program written in the PostScript language. Section 4
explains the syntax, and tells which entries are required and which are
optional. The ordering of the key-value pairs in the dictionary portion of the

CIDFont Resource

Part 1

PostScript
Language
Program

CIDFont
Resource

Part 2

Glyph Data

Includes:
CIDMap
SubrMaps
Subroutines
Charstrings

Always
loaded
into
VM

May
remain
on
disk

FDArray

CID
0

1

2

CIDMap

Charstrings

SubrMap

Subroutines

FD 0
FD 1
FD 2

To rasterizer

Font
Dictionary
Information

Character
Description

3 CIDFont Tutorial 19

file (the part loaded into VM) is unimportant; in the portion of the file that
usually remains on disk (charstrings, subroutines, and their offset maps),
offset information is very important. Because the data section is offset-based,
do not alter this section of a CIDFont resource casually—you may risk
making hundreds of offsets incorrect.

Example 1:

Example CIDFont file, including font dictionary

%!PS-Adobe-3.0 Resource-CIDFont

%%DocumentNeededResources: procset CIDInit

%%IncludeResource: procset CIDInit

%%BeginResource: CIDFont Ryumin-Light

%%Title: (Ryumin-Light Adobe Japan1 0)

%%Version: 1

/CIDInit /ProcSet findresource begin

20 dict begin

/CIDFontName /Ryumin-Light def

/CIDFontVersion 1 def

/CIDFontType 0 def

/CIDSystemInfo 3 dict dup begin

 /Registry (Adobe) def

 /Ordering (Japan1) def

 /Supplement 0 def

end def

/FontBBox [-180 -293 1090 1010] def

/UIDBase 27611 def

/XUID [1 11 27611] def

/FontInfo 2 dict dup begin

 /Notice ((c) Copyright 1993 Adobe Systems Incorporated. All

Rights Reserved.) def

 /FullName (Ryumin-Light) def

end def

/CIDMapOffset 0 def

/FDBytes 1 def

/GDBytes 3 def

/CIDCount 8284 def

/FDArray 3 array

dup 0

%ADOBeginFontDict

14 dict begin

 /FontName /Ryumin-Light-Proportional def

 /FontType 1 def

 /FontMatrix [0.001 0 0 0.001 0 0] def

 /PaintType 0 def

 %ADOBeginPrivateDict

20 Adobe CMap and CIDFont Files Specification (11 June 93)

/Private 25 dict dup begin

/MinFeature {16 16} def

/lenIV 1 def

/LanguageGroup 1 def

 /BlueValues [-14 0 662 682 448 458] def

/BlueScale 0.0396271 def

 /BlueFuzz 1 def

 /BlueShift 7 def

/StdHW [85] def

/StdVW [85] def

/StemSnapH [85] def

/StemSnapV [85] def

 /OtherSubrs

 [{} {} {}

 { systemdict /internaldict known not

 { pop 3 }

 { 1183615869 systemdict /internaldict get exec dup

 /startlock known

 { /startlock get exec }

 { dup /strlck known

 { /strlck get exec }

 { pop 3 }

 ifelse

 }

 ifelse

 }

 ifelse

 } bind

 {} {} {} {} {} {} {} {} {}

 { 2 { cvi { { pop 0 lt { exit } if } loop } repeat }

 repeat } bind

] def

/password 5839 def

 /SubrMapOffset 33140 def

 /SDBytes 3 def

 /SubrCount 5 def

 end def

%ADOEndPrivateDict

currentdict end

%ADOEndFontDict

put

dup 1

%ADOBeginFontDict

14 dict begin

<< Font dictionary omitted >>

currentdict end

%ADOEndFontDict

put

dup 2

%ADOBeginFontDict

14 dict begin

3 CIDFont Tutorial 21

<< Font dictionary omitted >>

currentdict end

%ADOEndFontDict

put

def

%%BeginData: 4325480 Binary Bytes

(Binary) 4325452 StartData

<<CIDMap omitted>>
<<SubrMap omitted>>
<<charstrings omitted>>
<<Subroutine Information omitted>>

%%EndData

%%EndResource

%%EOF

Comment Conventions

A CIDFont file must begin with the comment characters

%!

; otherwise it may
not be given the appropriate handling in some operating system environ-
ments. The first line of the example consists of the following comment:

%!PS-Adobe-3.0 Resource-CIDFont

The remainder of the line (after the

%!

), identifies the file as a CIDFont
resource that conforms to the PostScript language document structuring con-
ventions version 3.0. Document structuring conventions are explained in the

PostScript Language Reference Manual, Second Edition

.

%%DocumentNeededResources: procset CIDInit

%%IncludeResource: procset CIDInit

The

%%Include

 construct tells spooler and similar software to determine
whether the required resource is available. If the resource is not already avail-
able in VM—but is available for downloading—then the spooler should
include that resource in-line in the job stream being sent to the interpreter.

The

%%BeginResource

 comment informs spoolers and resource managers
that the information which follows is a resource. There is a corresponding

%%EndResource

 comment at the end of the file. The

%%BeginResource

line also states the type of resource (

CIDFont

) and its name (

Ryumin-Light

).

%%BeginResource: CIDFont Ryumin-Light

The

%%Title

 comment again states the CIDFont name, and provides the

Reg-
istry

 and

Ordering

 strings, and the

Supplement

 number.

%%Title: (Ryumin-Light Adobe Japan1 0)

22 Adobe CMap and CIDFont Files Specification (11 June 93)

The

%%Title

 comment has the following structure:

%Title: (

<CIDFontName> <registry> <ordering> <supplement>

)

where

CIDFontName

 identifies the CIDFont file, and the remaining fields

<registry>

,

<ordering>

, and

<supplement>

 duplicate version control infor-
mation present elsewhere in the file (primarily as a convenience to parsers).

<registry>

 and

<ordering>

 are strings that can consist of alphanumerics and
the underscore character. No white space is allowed within the string.

<sup-
plement>

 is an integer.

The

%%Version

 comment provides the version number of this CIDFont file.
This number is an integer; Adobe recommends that it be the same number
that is defined for

/CIDFontVersion

 later in the file.

%%Version: 1

Note The

%%Version

 comment is optional. Adobe encourages its use as an aid to
installation software and for future file maintenance.

Additional comments are permitted as long as they conform to the document
structuring conventions.

CIDInit Procset Execution Environment

Immediately after the header information and before the definition of the
CIDFont proper, a findresource is done on the procset CIDInit, which is one
of the system support files installed on the host or printer hard disk. This
ensures that the routines necessary to process CIDFont files are first read into
VM. An end operator corresponding to this begin appears near the end of the
file.

/CIDInit /ProcSet findresource begin

Appendix A contains an explanation of the CIDInit procset and system sup-
port files. Adobe provides these files to developers. See Appendix C for infor-
mation about how to obtain these and other development files.

CIDFont Resource Dictionary

The line

20 dict begin

defines and pushes a dictionary onto the dictionary stack. CIDFont is a
resource category with an underlying type of dictionary; each CIDFont file
defines an instance of that category. The StartData line near the end of the

3 CIDFont Tutorial 23

example file actually registers the font as a resource instance. Resource cate-
gories and their instances are explained in the PostScript Language Reference
Manual, Second Edition.

Note Because some of the entries described below and in section 4 are optional,
the size of dictionary you define may be different from the 20-entry dictionary
presented in this example. Level 1 implementations of the PostScript lan-
guage generate a dictfull error if you attempt to define an entry into a dictio-
nary that is already full. No error is generated in Level 2 interpreters. For
future extensibility Adobe advises, as was done here, that you define a dictio-
nary containing room for three or four additional entries.

CIDFont Name, Version, and Type

The line beginning with /CIDFontName formally defines the name of the
CIDFont file. It is the instance name passed to the resource machinery of the
PostScript interpreter. Adobe recommends that this be the same name used in
the %%Title comment.

/CIDFontName /Ryumin-Light def

The line beginning with /CIDFontVersion formally defines the version
number of this CIDFont file. If present, this must be the same version number
used in the %%Version comment.

/CIDFontVersion 1 def

The line beginning with /CIDFontType defines changes to the internal orga-
nization of CIDFont files or to the semantics of CIDFont dictionary keys. The
CIDFontType of the CIDFonts described in this document is 0. The value of
CIDFontType is an integer.

/CIDFontType 0 def

The CIDFontName and CIDFontType are required to be present in the
CIDFont file; the CIDFontVersion is optional.

Version Control

Version control information is included in the dictionary structure in Exam-
ple 2::

Example 2: CIDSystemInfo

/CIDSystemInfo 3 dict dup begin

/Registry (Adobe) def

/Ordering (Japan1) def

/Supplement 0 def

end def

24 Adobe CMap and CIDFont Files Specification (11 June 93)

This three-element dictionary contains the set of information used for version
compatibility checking between CIDFont and CMap files. In addition, each
component of the system has its own version field to reflect changes within
that component, for example, /CIDFontVersion.

Registry, Ordering, and Supplement entries are required in every CIDFont.
There is no length limitation on version control strings (other than the Post-
Script language limitation of 65535 characters). Version control strings must
consist only of alphanumeric characters and the underscore character (_). No
white space is permitted.

Registry

Registry is a string value assigned only by the Unique ID coordinator at
Adobe Systems. The Registry string identifies an issuer of orderings and is
typically a font vendor. For example, the Registry for Adobe Systems is
Adobe.

Note See Appendix C for specific information about obtaining Registry strings.

Ordering

The Ordering string uniquely names an ordered character collection within a
Registry. For example, an Ordering string within the Adobe Registry is
Japan1 and refers to an ordered character collection of 8284 characters.

Different Registries may have identical Ordering strings and operate simulta-
neously on the same PostScript interpreter because the Registry and Ordering
strings, taken together, uniquely identify the character collection.

Supplement

The Supplement integer identifies whether additions have been made to a
character collection. The first time a collection is produced by a developer, it
should have the Supplement integer 0. As a developer produces incremental
additions to that collection, the Supplement number should also be increased
by 1 with each release.

Supplement numbers indicate only that additions have been made to the
character collection. These additions must follow all previously assigned CID
index values. To rearrange or delete characters from a character collection
requires defining a new Ordering.

Nonmatching System Information

If the Registry and Ordering strings are identical, a CIDFont and a CMap can
be used together. If the Registry and Ordering strings do not match, the two
files cannot be used together.

3 CIDFont Tutorial 25

A CMap file and a CIDFont file may have Registry and Ordering strings that
match yet have differing Supplement numbers. This may occur if either a
CIDFont file or a CMap file has been upgraded, but the other has not.

• When Supplement numbers also match, every mapping in the CMap file
results in CIDs that are valid in the CIDFont.

• When the Supplement number in the CMap file is less than the Supple-
ment number in the CIDFont file (the CIDFont file is later than the CMap),
every mapping in the CMap file results in CIDs that are valid in the
CIDFont. However, the CIDFont will have extra CIDs available that
cannot be produced by the earlier CMap file.

• When the Supplement number in the CMap file is greater than the Sup-
plement number in the CIDFont file (the CIDFont file is earlier than the
CMap), some mappings from the later CMap file result in CIDs that are
not valid in the CIDFont file. CID 0, the default notdef character, is used in
this event.

FontBBox

FontBBox is a required key that defines in an arbitrary space of 1000/em a
box large enough to enclose any of the characters in the CIDFont.

Every glyph in the character collection corresponds to one or another of the
font dictionaries in the FDArray, and each of the font dictionaries has a Font-
Matrix key. That FontMatrix key controls the character space for all charac-
ters using that font dictionary. Typically, the FontMatrix is 1000 units to the
em—but not necessarily so. Because FontMatrix may not always be 1000
units to the em, FontBBox is defined in an arbitrary space that does consist of
1000 units to the em. See the PostScript Language Reference Manual, Second
Edition or Adobe Type 1 Font Format for an explanation of FontBBox.

/FontBBox [-180 -293 1090 1010] def

Unique Identification Numbers

The CIDFont file defines two types of unique ID numbers. Unique ID num-
bers are necessary so that fonts can be cached between jobs. The first type of
unique ID has a UIDBase value in the CIDFont file and a UIDOffset value in
the CMap file. The second type has an XUID (extended unique ID) number in
the CIDFont file only. The XUID number is a Level 2 feature; it is ignored by
Level 1 interpreters. Unique IDs are explained in more detail in the section
“Unique Identification Numbers,” and in Appendix A.

The first type (UIDBase + UIDOffset) is intended for Level 1 interpreters
with composite font extensions or for Level 2 interpreters that do not offer
native mode support for CID-keyed fonts (as defined in Section 2). The XUID

26 Adobe CMap and CIDFont Files Specification (11 June 93)

method is intended for Level 2 interpreters that can offer native mode sup-
port. Adobe recommends using both types of unique ID numbers for back-
ward compatibility as well as for continued future compatibility. Both types
of unique ID numbers are optional.

Unique ID Type: UIDBase

The line

/UIDBase 27611 def

sets the starting or base value for a group of unique ID numbers for the
CIDFont. Each CMap file has an entry that gives the offset from this base for
its particular character set and encoding. When a CID-keyed font is created in
VM, the base and offset values are used to create unique ID numbers “on the
fly” as required. Both parts work together to ensure that there is no collision
between an ID assigned to a CIDFont and an ID assigned to any other font
program.

Note UIDBase numbers are assigned by Adobe Systems. UIDOffset numbers are
calculated by the font developer. The typical maximum count of consecutive
numbers available for a CIDFont is 1000; larger and smaller ranges are
available on request.

Unique ID Type: XUID

An XUID (extended unique ID) is an entry whose value is an array of inte-
gers. This array identifies a font by the entire sequence of numbers in the
array. The line

/XUID [1 11 27611] def

defines an XUID array. The XUID array in the CIDFont file has no relation-
ship to the XUID in the CMap file.

The first element of an XUID array must be a unique organization identifier,
assigned by Adobe Systems. Appendix C explains how to obtain such an
identifier. In the example, the value 1 identifies the organization as Adobe
Systems. The remaining elements, and the allowed length of XUIDs starting
with that organization ID, are the responsibility of the organization to which
the organization ID has been assigned. An organization can establish its own
registry for managing the space of numbers in the second and subsequent ele-
ments of XUID arrays.

The organization ID value 1000000 is reserved for private interchange in
closed environments. XUID arrays starting with that number may be of any
length.

3 CIDFont Tutorial 27

FontInfo

The FontInfo dictionary is optional and contains information for PostScript
language programs using the CIDFont resource, or as human-readable docu-
mentation. The PostScript Language Reference Manual, Second Edition
describes the various FontInfo keywords that are valid and how they are used
by application programs.

Example 3: FontInfo dictionary

/FontInfo 2 dict dup begin

/Notice ((c) Copyright 1993 Adobe Systems Incorporated. All

Rights Reserved.) def

/FullName (Ryumin-Light) def

end def

Accessing Charstring Data

As stated before, there are two parts to the CIDFont file: a PostScript lan-
guage program, and a data section. The data section can contain four blocks:

• a CIDMap that associates a font dictionary index with a glyph descriptor
value used to access charstring data with each CID,

• one or more SubrMaps that associate a descriptor used to access subrou-
tine data with each subr index,

• the subroutines used by the charstring data, and

• the charstrings that contain glyph descriptions.

This section describes the format of the CIDMap and how it is used to access
charstring data.

CIDMap Format

Example 4: provides information necessary to access and interpret the
CIDMap.

Example 4: CIDMap offset

/CIDMapOffset 0 def

/FDBytes 1 def

/GDBytes 3 def

/CIDCount 8284 def

The CIDMapOffset is the byte location relative from the start of the data sec-
tion of the CIDFont file. See the section “Defining the CIDFont Resource and
the Data Section,” for a more precise definition of the start of the data section.

28 Adobe CMap and CIDFont Files Specification (11 June 93)

The keywords FDBytes and GDBytes have values corresponding to the
number of bytes used to store the font dictionary (FD) index and the glyph
descriptor (GD) value, respectively, for each CID in the CIDMap. The sum
of these two byte lengths is the length of one interval in the CIDMap, and is
used in conjunction with a CID to determine how many bytes from the begin-
ning of the CIDMap to locate the interval containing the data for that CID.

If FDBytes is equal to 0, the CIDMap contains no FD indices, and the FD
index of 0 is assumed.

The GD value is an offset relative from the start of the data section to the
desired charstring. Figure 3 shows how these intervals are organized.

Figure 3 Internal organization of the CIDMapOffset string

Note All Japanese language fonts Adobe has produced to date use one byte to
index into the FDArray and three bytes of offset information per character
description. Your values may differ.

Because the length of a charstring for a given CID is defined as the difference
between its GD value and the value of the successor GD, charstrings must be
contiguous and in increasing order. As a consequence of this, it is possible to
omit glyphs for CIDs from a CIDFont by making their GD value and succes-
sor GD values the same. An interval for a CID having this property is called
an empty interval.

....

FD Index for CID 1

GD Value:
to charstring for CID 1

FDBytes = 1 GDBytes = 3 FDBytes = 1 GDBytes = 3

Interval 0 Interval 1

FD Index: index into
FDArray for CID 0

GD Value: offset
to charstring for CID 0

01 01 c8 20 03 01 c9 3e

3 CIDFont Tutorial 29

Also note that to compute the length of the last charstring, an extra interval is
needed which follows the interval for the last CID. This interval is called the
last interval. The GD value for the last interval must be one more than the
final byte of the charstring for the last CID. The FD index for the last interval
is undefined if FDBytes is greater than 0.

The first CIDMap interval, which is indexed by CID 0, contains the FD index
and GD value for the default notdef character. All CIDFonts must include a
default notdef character—the appearance of the glyph assigned to CID 0 or
pointed to by CID 0 in each CIDFont, as with other glyphs, is left to the font
designer. Section 5 discusses in detail the circumstances in which the CMap
resource instance decodes character codes to the character ID of 0.

The keyword CIDCount defines how many CIDs are defined in the character
collection. A CIDCount of n indicates CIDs from 0 to n – 1, and a CIDMap
will have n + 1 intervals, including the last interval.

Building Subset CIDFonts

It is sometimes especially useful to build a CIDFont containing a subset of all
the glyphs for its character collection. Such a font is called a subset font. For
example, a font vendor might want to build a Kana subset of a full Japanese
language font. Or, a developer might want to omit certain infrequently used
glyphs. Glyph data might not be available for some characters in a character
collection; still it might be desirable to build such a CIDFont.

In these cases, an empty interval is used to indicate that glyph data is missing.
For example, in Figure 4, the second font is missing the “B” glyph.

30 Adobe CMap and CIDFont Files Specification (11 June 93)

Figure 4 Empty intervals

In the figure, the “full” font on the left has a character collection of three
characters, and has a CIDMap that has intervals corresponding to each char-
acter, and one additional (last) interval. It also has two font dictionaries in its
FDArray.

The “subset” font also has a character collection of three characters, though
the glyph for “B” is not present. This font also has a CIDMap that has inter-
vals corresponding to each character, and an additional (last) interval.
Because only one font dictionary was needed in the subset font, the optimiza-
tion of setting FDBytes to 0 was used. Notice that although the GD values for
both intervals 1 and 2 are the same, the computed lengths for the charstring
data indicate that interval 1 is an empty interval (the length of the charstring
equals 0), while interval 2 has glyph data (the length of the charstring equals
50).

If the CID references an empty interval, the appropriate notdef character will
be selected instead.

FDArray: Overall Structure

The FDArray is an array of font dictionaries. A font dictionary contains essen-
tial hinting information that is used, along with a charstring, to render a
glyph. An entry in each font dictionary that stores this information is another
dictionary called Private. Given the large collection of characters possible in
a CIDFont, it is likely that there will be groups of glyphs that are similar and
which can be hinted alike. Such groups reference the same font dictionary.

Note Although the font dictionaries in the FDArray contain most of the essential
entries of a well-formed font dictionary (as defined in Adobe Type 1 Font
Format), these are not font dictionaries on which to do a findfont, define-
font, or other such operations.

/FDBytes 1 def
/FDArray 2 dict begin
... end

/FDBytes 0 def
/FDArray 1 dict begin
... end

CID/
Interval FD GD Character

CID/
Interval GD Character

0
1
2
3

0
1
0
0

100
200
350
400

“A”
“B”
“C”
--

0
1
2
3

100
200
200
250

“A”
--
“C”
--

Length = 0
Empty interval implied

3 CIDFont Tutorial 31

The example following shows the overall structure of an FDArray and omits
individual font dictionary content which was shown at the beginning of sec-
tion 3.2, “CIDFont Example.” This array contains three font dictionaries, but
another CIDFont may have more or fewer according to the number of hint
groups needed.

Example 5: FDArray

/FDArray 3 array

dup 0

%ADOBeginFontDict

14 dict begin

<< Font dictionary omitted >>
currentdict end

%ADOEndFontDict

put

dup 1

%ADOBeginFontDict

14 dict begin

<< Font dictionary omitted >>
currentdict end

%ADOEndFontDict

put

dup 2

%ADOBeginFontDict

14 dict begin

<< Font dictionary omitted >>
currentdict end

%ADOEndFontDict

put

def

Every charstring must reference one of the font dictionaries defined in this
array, and every CIDFont must have an FDArray with at least one font dictio-
nary.

Each font dictionary in a CIDFont of CIDFontType 0 is a font dictionary as
described in the PostScript Language Reference Manual, Second Edition,
with certain exceptions. These font dictionaries may be Type 1 or Type 3 font
dictionaries, but must not include the following entries:

Type 1 Exceptions

Encoding Array Should not be present in an FDArray font dictio-
nary because the CMap file controls encoding.

Charstring Dictionary Should not be present in an FDArray font dictio-
nary because charstring information appears in a data block near the end
of the CIDFont file.

32 Adobe CMap and CIDFont Files Specification (11 June 93)

Subrs Array Should not be present in an FDArray font dictio-
nary because subroutine information appears in a data block near the end
of a CIDFont file along with charstrings and offset and index information.

Type 3 Exceptions

Encoding Array Should not be present in an FDArray font dictio-
nary because the CMap file controls encoding.

Handling Subroutine Information

The information that is handled by the Type 1 Subrs array must be organized
differently in a CIDFont. In Type 1 font programs, Subrs subroutines for
charstrings are defined in the Private dictionary, but they are stored in the
data section of CIDFonts. OtherSubr subroutines are defined in the Private
dictionary of CIDFonts.

Within the Private dictionary of the example are defined three keywords with
values such as in Example 6::

Example 6: Three keywords in the Private dictionary

/SubrMapOffset 33140 def

/SDBytes 3 def

/SubrCount 5 def

The SubrMapOffset is the byte offset relative from the start of the data sec-
tion of the CIDFont to the beginning of the SubrMap, a sequence of intervals
containing Subroutine Descriptor (SD) values used to access subroutine data.
SD values are typically offsets to subroutine data, but in some data organiza-
tions may be indices.

The keyword SDBytes defines the number of bytes needed to store the SD
value, and is the length of one interval in the SubrMap. If these three entries
are not present in the Private dictionary, there are no subroutines.

The SubrMapOffset, SDBytes, and subroutine index determine how many
bytes from the beginning of the SubrMap are needed to locate the interval
containing the SD value for that subroutine index. The length of a subroutine
for a given subroutine index is defined as the difference between its SD value
and that of the successor SD value; therefore, a last interval for SubrMaps is
needed, just as with the CIDMap. Figure 5 shows how the SubrMap relates to
the length of subroutine data.

3 CIDFont Tutorial 33

Figure 5 Relationship of SubrMap to subroutine data length

Because the subroutine information appears in a font dictionary, and because
there can be more than one font dictionary in the FDArray, it follows that
there can be more than one SubrMap. If there is more than one SubrMap,
Adobe recommends that they be organized contiguously; the value of Sub-
rMapOffset in each font dictionary points to the start of the SubrMap for that
particular font dictionary. There is only one Subroutine data section, the sub-
routine information within it organized contiguously.

Defining the CIDFont Resource and the Data Section

Having all components defined for the CIDFont resource, it is necessary to
register that resource, signal the end of the PostScript language program, and
begin the data section. This is accomplished with the StartData procedure, as
in Example 7.

The comment %%BeginData and its corresponding %%EndData bracket the
data section of the file for parsers, spoolers, and ATM-J. See the PostScript
Language Reference Manual, Second Edition for more specific information
about the %%BeginData comment.

The data following the StartData procedure name includes the CIDMap, the
SubrMaps, the subroutine data, and the charstring data (typically in that

Subroutine Index 0 Subroutine Index 1 Subroutine Index 2

Interval 0 Interval 1 Interval 2

00 82 2B 00 82 37 00 82 3D

33140 33143 33146 33149

subroutine length = 823D16 – 823716 = 6

Equivalent PostScript code:

0 1 CallOtherSubr return
33335 (= 823716) 33341 (=823D16)

C4 68 10 05 6A 5C

SubrMap

Subroutine
Data

34 Adobe CMap and CIDFont Files Specification (11 June 93)

order) and begins one byte following the procedure name. If the first argu-
ment to StartData is Binary, then this byte must be a space character (0x20).
If the first argument is Hex, then any white space characters may be used.

Example 7: The StartData procedure

%%BeginData: 4325480 Binary Bytes

(Binary) 4325452 StartData

<<Data begins one space following StartData>>
<<CIDMap omitted>>
<<SubrMap omitted>>
<<Subroutine Information omitted>>
<<charstrings omitted>>
%%EndData

%%EndResource

Note The StartData procedure that comes “stock” with the compatibility mode
CIDInit procset is designed for file-based CIDFonts. If you need to load a
CIDFont into VM, Adobe will provide a different version of StartData.

The StartData procedure is defined by the CIDInit procset. StartData regis-
ters the CIDFont resource. /CIDFontName is the key associated with this
instance.

The comment %%EndResource ends the file.

4 CIDFont Reference

This section summarizes information presented in section 3 and provides
additional information on topics not covered there. Primarily, it documents
information about each keyword in the PostScript language portion of a
CIDFont file. The detailed explanation is presented in alphabetical order by
keyword name.

4.1 CIDFont Organization

A CIDFont has two parts: a PostScript language program section and a data
section. The PostScript portion produces a CIDFont resource instance, which
is a dictionary object, and defines a variety of keys. The data section contains
charstrings, their subroutines, and data used to access them.

Keyword Organization

This section provides a list of CIDFont dictionary keys (with the exception of
CIDInit, and StartData, which are procedure names); some keys are optional.
In a file, each key takes a value, and must be properly defined as a member of
a dictionary. See the sample file in Section 3 for an example of constructing a
CIDont resource using these keys.

4 CIDFont Reference 35

CDevProc (optional)
CIDInit (required) Procedure name
CIDFontName (required)
CIDFontVersion (optional)
CIDFontType (required)
CIDSystemInfo (required)
FontBBox (required)
UIDBase (optional)
XUID (optional)
FontInfo (optional)
CIDMapOffset (required)
FDBytes (required)
GDBytes (required)
CIDCount (required)
FDArray (required)
StartData (required) Procedure name

The first part of the file (up to but not including the data section) is a self-con-
tained PostScript language program. It ends with StartData, and produces a
CIDFont resource instance in VM. The data section is not placed in VM and
remains on disk.

Data Section

The data section can contain four items:

• A CIDMap, which contains information about the location of each char-
string in the CIDFont and the font dictionary that corresponds to it.

• One or more SubrMaps, which contain information about the location of
each subroutine used by the characters in the font. SubrMaps are optional,
depending on whether the font dictionaries in the FDArray require subrou-
tines.

• The subroutines used by the glyph descriptions. Subroutines are optional,
depending on whether the font dictionaries in the FDArray require them.

• The charstrings, which contain the glyph descriptions.

4.2 CIDFont Resource Keys

This section summarizes in alphabetical order the keys that are understood in
a CIDFont resource dictionary. The type of each key (for example, integer)
appears after its name, along with whether that key is required in the
CIDFont file.

36 Adobe CMap and CIDFont Files Specification (11 June 93)

CDevproc procedure optional

The CDevProc procedure algorithmically derives global changes to a font’s
metrics. See the PostScript Language Reference Manual, Second Edition for
more extensive information about using CDevProc in font programs.

CIDCount integer required 3.2.9

The CIDCount key provides the number of valid character IDs in the
CIDFont. Valid CIDs are in the range of 0 to CIDCount – 1, inclusive.

CIDFontName name required 3.2.4

This keyword sets the name of the CIDFont resource instance. That name is
the key subsequently used to identify this resource instance. It is very
important for CIDFontName to conform to the naming conventions for
CIDFonts. Naming conventions are discussed in Appendix A.

CIDFontType integer required 3.2.4

The CIDFontType keyword tells what is in the font resource, how it is orga-
nized, and how it is represented. All CIDFonts described in this document
have a CIDFontType of 0. Other CIDFontType values are reserved.

CIDFontVersion integer optional 3.2.4

The CIDFontVersion formally defines the version number of this CIDFont
file. This should be the same version number used in the %%Version com-
ment.

CIDMapOffset integer required 3.2.9

The CIDMapOffset is the byte offset of the CIDMap relative from the start of
the data section of the CIDFont file. See the section “Defining the CIDFont
Resource and the Data Section,” for a more precise definition of the start of
the data section.

CIDSystemInfo dictionary required 3.2.5

The CIDSystemInfo dictionary is required. It is important in maintaining
version control among the component files that make up the CID-keyed font.
The string keywords to this dictionary have the standard PostScript language
limit of 65535 bytes; however they may contain only alphanumeric charac-
ters and the underscore (_) character—white space is not permitted. See sec-
tion 3, “CIDFont Tutorial,” for examples of how to use the CIDSystemInfo
keywords.

The CIDSystemInfo dictionary must contain the following three keywords.

4 CIDFont Reference 37

Registry string required

Registry is a string value assigned by the Unique ID Coordinator at Adobe
Systems. An example of the Registry keyword and value is:

/Registry (Adobe) def

Ordering string required

The Ordering string uniquely identifies the ordered glyph collection of the
CIDFont within its Registry. Two different Registry values may have the
same Ordering string. An organization is responsible for maintaining its own
set of Ordering strings. An example of the Ordering keyword and value is:

/Ordering (Japan1) def

Supplement integer required

The Supplement integer identifies any additions to the glyph collection of a
CIDFont. Such additions must not alter the existing ordering of the collection
(in which case, the Ordering string would change).

FDArray array required 3.2.10

The FDArray is an array of font dictionaries. A font dictionary contains essen-
tial hinting information which is used, along with a charstring, to render a
glyph.

Every charstring must reference one of the font dictionaries defined in this
array, and every CIDFont must have an FDArray with at least one font dictio-
nary.

The value for FDBytes determines how many bytes are used as an index into
the FDArray and, hence, the range of font dictionaries that can be referenced.
For example, With an FDBytes value of 1, a CIDFont’s FDArray can have up
to 256 referenced font dictionaries (numbered 0 to 255).

eexec encryption is not required for CIDFontType 0 fonts.

See section 3 for a complete discussion of how the font dictionaries in the
FDArray access subroutines.

FDBytes integer required 3.2.9

FDBytes has a value corresponding to the number of bytes used to store the
font dictionary (FD) index for each CID in the CIDMap. If FDBytes is equal
to 0, the CIDMap contains no FD indices, and the FD index of 0 is assumed.

38 Adobe CMap and CIDFont Files Specification (11 June 93)

FontBBox array required 3.2.6

FontBBox is a required key that defines in an arbitrary space of 1000/em a
box large enough to enclose any of the characters in the CIDFont. See the
PostScript Language Reference Manual, Second Edition or Adobe Type 1
Font Format for an explanation of FontBBox.

FontInfo dictionary optional 3.2.8

This keyword holds the font name, weight, and any copyright notice. See
PostScript Language Reference Manual, Second Edition, and Adobe Type 1
Font Format for more information about the FontInfo dictionary keyword.

GDBytes integer required 3.2.9

GDBytes has a value corresponding to the number of bytes used to store the
glyph descriptor (GD) value for each CID in the CIDMap. The GD value is
an offset relative from the start of the data section to the desired charstring.

UIDBase integer optional 3.2.7

UIDBase complements an entry in the CMap file (UIDOffset). Together, their
data make up a two-part system based on both the CIDFont and the CMap
files for assigning unique IDs in VM. See section 5 for an explanation of how
both values work together.

UIDBase is a number in the range 0 to 16,777,215 (or 224 – 1), and is
assigned by Adobe Systems. See Appendix C for specific information about
obtaining UIDBase numbers from Adobe Systems.

Note: UIDBase (and UIDOffset) are useful only in compatibility mode.
Adobe suggests including them for backwards compatibility.

XUID integer optional 3.2.7

An XUID (extended unique ID) is an entry whose value is an array of inte-
gers. This array identifies a font by the entire sequence of numbers in the
array. For example, the line

/XUID [1 11 27611] def

defines an XUID array. The XUID array in the CIDFont file has no relation-
ship to the XUID in the CMap file.

Note: XUID is useful only in native mode. Adobe strongly suggests including
an XUID to help ensure future compatibility.

4 CIDFont Reference 39

4.3 Defining the CIDFont Resource

The StartData procedure registers the CIDFont resource, proceduralizes how
the data section of the CIDFont file is handled by the PostScript interpreter,
and signals the beginning of the data section of the CIDFont. The data section
consists of the CIDMap, charstrings, any SubrMaps, and any Subrs. The
StartData procedure is defined in the CIDInit procset.

The syntax of StartData is

(<string>) <int> StartData

where the value of <string> can be Binary or Hex to specify how the data is
encoded, and the value of <int> is the number of bytes of data after decod-
ing. This data must begin one byte after the StartData procedure call is
encountered in the data stream or file. If the first argument to StartData is
Binary, then this byte must be a space character (0x20).

40 Adobe CMap and CIDFont Files Specification (11 June 93)

If StartData is executed when using a CIDFont from a file-based system, it

• defines the CIDFont resource,

• removes the CIDFont instance from the dictionary stack,

• executes a currentfile closefile,

• removes the CIDInit procset instance from the dictionary stack.

If StartData is executed when a CIDFont is to be loaded into VM, it

• creates one data object in the CIDFont resource dictionary to hold the
data. This object is made up of one or more PostScript language string
objects, depending on the size of the data.

• creates a second object in the CIDFont resource dictionary to act as a
CIDMap analog. The GD value in this object is an index, rather than an
offset.

• defines the CIDFont resource.

• removes the CIDFont instance from the dictionary stack.

• removes the CIDInit procset instance from the dictionary stack.

StartData allows data to be organized as binary or as ASCII hexadecimal val-
ues. ASCII hexadecimal is useful for transmitting data when using binary
might cause problems. Loading a CIDFont onto an file-based system, how-
ever, must result in the data section of a file being organized in a binary for-
mat, even if the data is transmitted as ASCII hexadecimal.

Data encoded as ASCII hexadecimal is converted to binary as follows. For
each pair of ASCII hexadecimal digits (0-9 and A-F or a-f), one byte of
binary data is produced. All white space characters—tab, carriage return,
linefeed, formfeed, and null—are ignored. The character > indicates end of
data (EOD); if the data section is ASCII hexadecimal, it must end with this
end-of-data character. Any other characters cause an ioerror. If the decoding
filter encounters EOD when it has read an odd number of hexadecimal digits,
it behaves as if it has read an additional zero digit.

Here are two examples of using the StartData procedure.

Example 8 Using the StartData procedure

%%BeginData: 2484 Binary Bytes

(Binary) 2460 StartData

<<2460 binary bytes of data omitted>>
%%EndData

5 CMap Tutorial 41

%%BeginData: 4942 Binary Bytes

(Hex) 2460 StartData

<<2460 pairs of ASCII hex data omitted>>
<<+ 1 EOD marker>>
%%EndData

The %%BeginData comment states the number of binary bytes in the data
section, plus (in this case) 24 and 22 additional bytes. The difference between
the comment value and the value used in the procedure call is the number of
characters in the procedure call line itself (plus one). This is so parsers and
spoolers can have an accurate character count based on the location of the
comment, and so the actual byte count of the data (which starts after the pro-
cedure call) can be accurate, too.

In the ASCII example, there are 2460 pairs of values, for a total of 4920
bytes. The offset for the call (21) plus the EOD marker (1) make for the dif-
ference as shown.

Of course, the number of additional bytes in any particular situation may be
different from this example, depending on whether the StartData procedure
takes the (Binary) or (Hex) string argument, and on the number of characters
that make up the integer argument.

5 CMap Tutorial

A CMap file defines the relationship between a character code and the char-
acter description delivered by the CIDFont program to the rasterizer.

The specific set of characters to which a CMap refers is called a character set
or charset. Various CMap files specifying different charsets can refer to the
same CIDFont; similarly, the same CMap file can refer to various fonts. The
mapping of input code to character ID defines the encoding imposed on the
charset. A CMap file is an ASCII text file; its format is a subset and extension
of the PostScript language, with its own syntactical rules.

It is unlikely that a font developer will need to build a CMap file for Japanese
language fonts. Adobe Systems makes available CMap files for the most
common charset and encoding combinations, as defined by Japanese national
standards groups. However, a developer will need to build a CMap file when
creating a font for a charset or encoding not provided by Adobe.

This tutorial covers the mapping of character codes to CIDs for a single
CIDFont. CMaps are more general than this; they can also map to codes or
names in a base font, and they can map a single space of codes into character
selectors for multiple fonts and CIDFonts. However, compatibility mode
restricts a CMap to a single CIDFont. As native mode devices become more
available, additional documentation will describe the extensions necessary to
support it.

42 Adobe CMap and CIDFont Files Specification (11 June 93)

5.1 CMap File Components

A CMap file specifies the character descriptions to which an input code maps.
The character may be identified by a character ID, a character name, or a
character code. The file contains header comments, information for ensuring
compatibility with CIDFont files, caching identification data, the writing
mode, a definition of codespace (the set of valid input codes), and code map-
ping information.

When executed, a CMap file creates a PostScript language resource instance
of type CMap in VM. The resource is implemented as a dictionary. See the
PostScript Language Reference Manual, Second Edition for more informa-
tion about resource instances and their types.

Two examples of a CMap file follow in this section. Each is complete. The
first is “stand-alone,” in that it does not use information from any other CMap
file. The second example incorporates information from another CMap file in
order to make its own definition of the input codes and the corresponding
glyphs smaller.

5.2 First Example: Stand-Alone CMap File

This example is a full and complete CMap file that does not use information
from any other CMap files. Where something has been omitted, there is
explanatory text between brackets, << like this >>.

Example 9 Stand-alone CMap file

%!PS-Adobe-3.0 Resource-CMap

%%DocumentNeededResources: procset CIDInit

%%IncludeResource: procset CIDInit

%%BeginResource: CMap 83pv-RKSJ-H

%%Title: (83pv-RKSJ-H Adobe Japan1 0)

%%Version: 1

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/CIDSystemInfo 3 dict dup begin

/Registry (Adobe) def

/Ordering (Japan1) def

/Supplement 0 def

end def

/CMapName /83pv-RKSJ-H def

/CMapVersion 1 def

/CMapType 0 def

/UIDOffset 0 def

5 CMap Tutorial 43

/XUID [1 10 25324] def

/WMode 0 def

4 begincodespacerange

 <00> <80>

 <8140> <9ffc>

 <a0> <df>

 <e040> <fbfc>

endcodespacerange

1 beginnotdefrange

<00> <1f> 1

endnotdefrange

100 begincidrange

<20> <7e>1

<8140> <817e> 633

<8180> <81ac> 696

<81b8> <81bf> 741

<81c8> <81ce> 749

<< 90 ranges missing >>

<9540> <957e> 3475

<9580> <95fc> 3538

<9640> <967e> 3663

<9680> <96fc> 3726

<9740> <977e> 3851

endcidrange

100 begincidrange

<9780> <97fc> 3914

<9840> <9872> 4039

<989f> <98fc> 4090

<9940> <997e> 4184

<9980> <99fc> 4247

<< 90 ranges missing >>

<ed83> <ed83> 7934

<ed84> <ed84> 992

<ed85> <ed85> 7935

<ed86> <ed86> 994

<ed87> <ed87> 7936

endcidrange

17 begincidrange

<ed88> <ed8d> 996

<ed8e> <ed8e> 7937

<< 13 ranges missing >>

<ee9a> <ee9a> 768

<ee9b> <ee9c> 7631

endcidrange

44 Adobe CMap and CIDFont Files Specification (11 June 93)

endcmap

CMapName currentdict /CMap defineresource pop

end

end

%%EndResource

%%EOF

Comment Conventions

A CMap file must begin with the comment characters %!; otherwise it may
not be given the appropriate handling in some operating system environ-
ments. The first line in the file is

%!PS-Adobe-3.0 Resource-CMap

The remainder of the line (after the %!) identifies that file as a CMap resource
that conforms to the PostScript language document structuring conventions
version 3.0. Document structuring conventions are explained in the Post-
Script Language Reference Manual, Second Edition.

In VM, the CMap uses a procset from a system support file named CIDInit.
Appendix A explains about system support and other files that may be
required by a particular PostScript interpreter. For the benefit of parsers and
spoolers, a CMap file carries the header lines

%%DocumentNeededResources: procset CIDInit

%%IncludeResource: procset CIDInit

%%DocumentNeededResources indicates that an external resource is
needed by this document; in this case, the procset CIDInit. %%IncludeRe-
source tells any handling software that if the resource is not available on the
PostScript interpreter, it should be included in-line if possible.

The %%BeginResource comment informs spoolers and resource managers
that the information that follows is a resource. There is a corresponding
%%EndResource comment at the end of the file. The %%BeginResource
line also states the type of resource (CMap) and its name (83pv-RKSJ-H).

%%BeginResource: CMap 83pv-RKSJ-H

The %%Title comment again states the CMap name, and provides the Regis-
try and Ordering strings, and the Supplement number.

%%Title: (83pv-RKSJ-H Adobe Japan1 0)

The %%Title comment has the following structure:

%Title: (<CMapName> <registry> <ordering> <supplement>)

5 CMap Tutorial 45

where CMapName identifies the CMap file, and the remaining fields registry,
ordering, and supplement duplicate version control information present else-
where in the file (primarily as a convenience to parsers). The variables regis-
try and ordering are strings that can consist of alphanumerics and the
underscore character. No white space is allowed within the string. The vari-
able supplement is an integer.

The %%Version comment provides the version number of this CMap file.
Adobe recommends that it be the same number that is defined for CMapVer-
sion later in the file.

%%Version: 1

Additional comments are permitted as long as they conform to the document
structuring conventions.

Initializing the CID Procset

Immediately after the header information and before the definition of the
CMap proper, a findresource operation is run on the file CIDInit, which is
one of the system support files installed in the file system. This ensures that
the routines necessary to process CMap files are first read into VM. An end
operator corresponding to this begin appears near the end of the file.

/CIDInit /ProcSet findresource begin

Appendix A contains an explanation of the CIDInit (and other) system sup-
port files.

CMap Resource Dictionary

After the CID procset has been initialized, the file defines a PostScript lan-
guage resource instance whose underlying type is a dictionary. The line

12 dict begin

begins this dictionary. The line that uses the operator defineresource near
the end of the file registers the CMap as a resource instance.

Note To accommodate structures that are built in VM, Adobe recommends that you
allocate five more elements to this dictionary than those that appear to be
directly consumed by the code. Using fewer elements than this may result in a
dictfull error on Level 1 interpreters. No such error occurs on Level 2 inter-
preters.

46 Adobe CMap and CIDFont Files Specification (11 June 93)

Establishing the CMap

After the CMap resource dictionary has been established, the definition of the
CMap can take place. The process adds several key-value pairs to the CMap
resource dictionary that are not apparent from the PostScript language code
in the CMap file, and which explain the extra dictionary elements in the pre-
ceding line.

The CMap is begun with the line

begincmap

There is a corresponding endcmap operator near the end of the file that com-
pletes the task of building the resource.

Version Control

The first of the dictionary objects is CIDSystemInfo. It contains the version
control information:

Example 10 Version control information

/CIDSystemInfo 3 dict dup begin

/Registry (Adobe) def

/Ordering (Japan1) def

/Supplement 0 def

end def

CID-keyed fonts implement version control to ensure compatibility between
this CMap file and the CIDFont files used with it. It is important that the Reg-
istry and Ordering strings of the CMap file match those of the CIDFont file
with which it works.

Version control information consists of two string values and one integer
value in the CMap file that appear as dictionary entries in the CIDSystemInfo
dictionary. The strings are Registry and Ordering. The integer is Supple-
ment. See the section “Version Control” for an explanation of how these
values are obtained. That section includes a discussion of what can happen
when the Supplement values of a CMap file and a CIDFont don’t match.

CMap Name, Version, and Type

The line beginning with CMapName formally defines the name of the CMap
file. It is the instance name passed to the resource machinery of the PostScript
interpreter. Adobe strongly recommends that this be the same name used in
the %%Title comment.

/CMapName /83pv-RKSJ-H def

5 CMap Tutorial 47

The line beginning with CMapVersion formally defines the version number
of this CIDFont file. If present, this must be the same version number used in
the %%Version comment.

/CMapVersion 1 def

The line beginning with CMapType defines changes to the internal organiza-
tion of CMap files or the semantics of CMap operators. The CMapType of
CMaps described in this document is 0. The value of CMapType is an inte-
ger.

/CMapType 0 def

The CMapName and CMapType are required to be present in the CMap file;
the CMapVersion is optional.

Unique Identification Numbers

The CMap file contains two types of unique ID numbers. Unique ID numbers
are necessary so that caching can take place between jobs. The first type of
unique ID uses the UIDOffset value in the CMap file and a corresponding
UIDBase value in the CIDFont file. This process is explained in more detail
in Appendix A. The second method uses an XUID (extended unique ID)
number which is not related to a similar number in the CIDFont file. The
XUID number is a Level 2 feature; it is ignored by Level 1 interpreters.

Unique ID Type: UIDOffset

The line

/UIDOffset 0 def

sets the offset of unique ID numbers for the character set described by this
file. Each CMap file must have its own set of unique ID numbers different
from those of other CMap files that reference the same character collection.
See section 3 for information about UIDBase.

Note UIDBase numbers are assigned by Adobe Systems. UIDOffset numbers are
calculated by the font developer. The typical maximum count of consecutive
numbers available for a CIDFont is 1000; larger and smaller ranges are
available on request.

Unique ID Type: XUID

An XUID (extended unique ID) is an entry whose value is an array of inte-
gers. This array identifies a font by the entire sequence of numbers in the
array. The line

/XUID [1 10 25324] def

48 Adobe CMap and CIDFont Files Specification (11 June 93)

defines an XUID array.

The first element of an XUID array must be a unique organization identifier,
assigned by Adobe Systems. Appendix C explains how to obtain such an
identifier. Section 3 discusses XUID numbers for CIDFont files; that informa-
tion is also valid here.

Writing Mode

The WMode dictionary entry controls whether the CID-keyed font writes
horizontally or vertically. It indicates which set of metrics will be used when
a base font is shown. An entry of 0 defines horizontal writing from left to
right; an entry of 1 defines vertical writing from top to bottom. Other values
for WMode are reserved.

/WMode 0 def

WMode in the CMap overrides any WMode in any font or CIDFont referred
to by the CMap file.

Codespace

The CMap file fully describes the potential set of valid input character code
values. Input codes may consist of one, two, three, or more hexadecimal
bytes, expressed between < > brackets, Ranges need not be contiguous, but
cannot overlap. The codespace definition unambiguously specifies which
input codes consist of one byte, which consist of two, and so forth. The defi-
nition of codespace must precede any code mappings, including any not-
defs—this is one of the few strict organizational requirements of the CMap
file.

Example 11 shows the definition of codespace for the first example:

Example 11 Codespace

4 begincodespacerange

<00> <80>

<8140> <9ffc>

<a0> <de>

<e040> <fbec>

endcodespacerange

The line

4 begincodespacerange

defines four codespace entries. The codespace entries themselves consist of
pairs of hexadecimal numbers in the form <low-end> <high-end>.

5 CMap Tutorial 49

A set of codespace ranges can have up to and including 100 definition lines.
This (and other similar limitations) helps avoid stack overflow errors on ear-
lier interpreters. If a CMap requires more than 100 lines to define its
codespace ranges, it can use several sets of 100 or fewer.

Codespace is not necessarily linear; the number of bytes required to express
the limits of the codespace range also indicates the dimensionality of that
range. Figure 6 shows how the codespace definition in this example com-
prises two single-byte linear ranges of codes (<00> to <80> and <A0> to
<DF>) and two double-byte rectangular ranges of codes (<8140> to <9FFC>
and <E040> to <FBFC>). The first two-byte region comprises all codes
bounded by first-byte values of 81 through 9F and second-byte values of 40
through FC. Thus, the input code <86A9> is within the region because both
bytes are within bounds. That code is valid. The input code <8210> is not
within the region, even though its first byte is between 81 and 9F, because its
second byte is not within bounds. That code is invalid. The second two-byte
region is similarly bounded.

Note Overlapping codespaces are not permitted.

50 Adobe CMap and CIDFont Files Specification (11 June 93)

Figure 6 Codespace ranges for the 83pv-RKSJ-H charset encoding

In this example, the codespace range from <00> to <80> consists of single-
byte codes. In the Japanese language font Ryumin-Light-83pv-RKSJ-H, these
are proportionally spaced Roman characters. The codespace <8140> to
<9FFC> consists of full-width Kanji characters. The range <A0> to <DF>
contains half-width Kana, and the range <E040> to <FBFC> contains
another set of full-width Kanji.

Code Mappings

A CMap file maps input codes within the codespace to a character selector
and component font index that actually accesses the glyph. The component
font index identifies the specific font, and the character selector identifies the
character within that font that is to be displayed. A character selector can be a
character ID for a CIDFont, a character code, or a glyph name—the latter two
are for accessing Type 1 and Type 3 fonts that may be part of a CID-keyed
font. For most purposes, this combination of character selector and compo-
nent font index is transparent, and it is useful to think of them as one item.

00

FF
00 FF

First
Byte

Second
Byte

81

40

8140

9F

9FFC

E0

E040

FB

FC

FBFC

86A9
(valid)

8210
(invalid)

One-Byte
Region

One-Byte
Region

00

80

A0

DF

7F

7F

Two-Byte Region

Two-Byte Region

5 CMap Tutorial 51

As shown in Example 12, the cidrange sections associate the beginning and
ending of a range of acceptable character codes, expressed as hexadecimal
strings, with the starting CID for that range. Code mappings can also associ-
ate input codes with character codes or glyph names, if needed.

Example 12 Code mappings

100 begincidrange

<20> <7e> 1

<8140> <817e> 633

<8180> <81ac> 696

<81b8> <81bf> 741

<81c8> <81ce> 749

<< 90 ranges missing >>

<9540> <957e> 3475

<9580> <95fc> 3538

<9640> <967e> 3663

<9680> <96fc> 3726

<9740> <977e> 3851

endcidrange

100 begincidrange

<9780> <97fc> 3914

<9840> <9872> 4039

<989f> <98fc> 4090

<9940> <997e> 4184

<9980> <99fc> 4247

<< 90 ranges missing >>

<ed83> <ed83> 7934

<ed84> <ed84> 992

<ed85> <ed85> 7935

<ed86> <ed86> 994

<ed87> <ed87> 7936

endcidrange

17 begincidrange

<ed88> <ed8d> 996

<ed8e> <ed8e> 7937

<< 13 ranges missing >>

<ee9a> <ee9a> 768

<ee9b> <ee9c> 7631

endcidrange

As with codespace ranges, there can be up to 100 code mapping ranges in
each set. When more than 100 are required, the CMap uses several sets. The
first line of each mapping states how many sets of input codes and starting
CIDs there are in the range—in the case of this example, a total of 217 in
three ranges of 100, 100, and 17. Succeeding lines within each range state a
specific starting input code, a specific ending input code, and the starting CID

52 Adobe CMap and CIDFont Files Specification (11 June 93)

for that range. The starting and ending input codes appear as hexadecimal
strings expressed within <> brackets; the CID is a decimal number with no
brackets.

There are 94 input codes between <20> and <7E>. Because the starting CID
is (decimal) 1, input code <20> corresponds to character ID 1, <21> corre-
sponds to 2, <22> corresponds to 3, and so forth. Input code <7E> corre-
sponds to character ID 94.

There are three important requirements of code mappings:

• Code mappings (unlike codespace ranges) may overlap, but succeeding
maps superceded preceding maps.

• The domain of the code mappings must lie entirely within the codespace.

• The domain of the code mappings may be multidimensional if the
codespace is multidimensional.

The operator endcidrange finishes code mapping for ranges of input.

Notdef Ranges

Input codes may be presented to the CMap resource instance that do not map
to valid character IDs according to the information in the codespace and code
mapping definitions. These are handled by showing notdef characters. The
default notdef character is always accessed by CID 0. Every CID-keyed font
must have a default notdef character. However, a developer can assign valid
input codes to the default notdef character and to notdef characters other than
the default.

• As shown in Figure 6, an input code that falls outside of valid codespace is
invalid. When an input code is presented to the CMap resource instance
that does not map to a valid codespace, the default notdef character will be
substituted and shown.

• If the Supplement numbers do not match between CIDFont and CMap
resources, an input code may be presented that does not map to an existing
character; in this case the default notdef character will be substituted and
shown.

• If the input code is for an empty interval (as explained in section 3), the
notdef character may be the default or one assigned by the developer,
depending on the notdef mapping.

• A developer can also explicitly assign a notdef to one or more valid input
codes.

5 CMap Tutorial 53

Note The name .notdef is the glyph name of a character required to be present in
Type 1 and Type 3 fonts. The term “notdef,” as used in the context of this doc-
ument, is a generic name Adobe uses to describe a glyph that will be shown if
some encoding does not result in a showable combination of component font
index and glyph selector.

The example shows how a developer can map valid input codes to specific
notdef characters.

1 beginnotdefrange

<00> <1f>1

endnotdefrange

The first line states how many ranges of notdef definitions there are—in the
case of this example, there is one. As with codespace ranges and code map-
pings, up to and including 100 notdef ranges can be specified in each set,
with several sets of 100 or fewer permitted.

The two hexadecimal strings (<00> and <1f>) state the bounds of the range
of input codes. The decimal number states the single character ID to which
all codes in that range are mapped if a notdef must be shown. For example, if
a character ID falling within the notdef range is presented to the CMap
resource instance, which for some reason (such as an empty interval) cannot
show a glyph, then the notdef character defined here will be shown instead.
Developer-defined notdefs such as this operate only when a CID that falls in
range cannot otherwise produce a glyph; they can thus coexist with ranges of
valid mappings.

Note Notdef characters are selected from the same collection as all other charac-
ters. The character corresponding to character ID 1 is a notdef character—
and happens also to be the first character in the code mapping range <00> to
<1f>.

The ability to specify several notdef characters is useful for fonts such as
those of the Japanese language, where there are several character subsets of
various widths. Adobe CMap files, for example, include half-width kana,
full-width Kanji, and proportional roman characters. Each subset has one
notdef character of its own, specifically the half-width space, that full-width
space, and the proportional space.

5.3 Closing the CMap File and Creating the Resource Instance

The last five lines of the CMap file explicitly end the CMap information,
establish the CMap resource, and formally close the file.

54 Adobe CMap and CIDFont Files Specification (11 June 93)

Example 13 The end of the CMap file

endcmap

CMapName currentdict /CMap defineresource pop

end

end

%%EndResource

%%EOF

The operator endcmap corresponds to the operator begincmap that appears
at the beginning of the file. The two operators bracket the CMap information.

The line

CMapName currentdict /CMap defineresource pop

explicitly states the encoding for this CMap file, defines it as a VM resource,
and pops it from the stack. The argument CMapName is the instance key,
defined earlier in the file. The argument CMap is the resource category. See
Appendix A for important information about CMap naming conventions.

The two end operators correspond (respectively) to the dict begin line and
the CIDInit procset invocation.

The comment

%%EndResource

is a comment that defines the end of the file in accordance with the document
structuring conventions. It is useful if this CMap file is concatenated with
other files in a job stream.

The comment

%%EOF

formally signals the end of the file.

5.4 Second Example: A CMap File That Uses Another

One CMap resource instance can use the VM structures already created by
another instance. This second example (Example 14) shows how this is done.
Most of the 8000-plus Kanji characters are the same whether written horizon-
tally or vertically; a few are different. This example shows a complete CMap
file for a vertical Japanese font that uses the characters already mapped for a
horizontal font, and which then goes on expressly to map only those charac-
ters that are different.

5 CMap Tutorial 55

Example 14 CMap file that uses another CMap file

%!PS-Adobe-3.0 Resource-CMap

%%DocumentNeededResources: procset CIDInit

%%DocumentNeededResources: CMap Ext-RKSJ-H

%%IncludeResource: procset CIDInit

%%IncludeResource: CMap Ext-RKSJ-H

%%BeginResource: CMap Ext-RKSJ-V

%%Title: (Ext-RKSJ-V Adobe Japan1 0)

%%Version: 1

/CIDInit /ProcSet findresource begin

12 dict begin

begincmap

/CIDSystemInfo 3 dict dup begin

/Registry (Adobe) def

/Ordering (Japan1) def

/Supplement 0 def

end def

/Ext-RKSJ-H usecmap

/CMapName /Ext-RKSJ-V def

/CMapVersion 1 def

/CMapType 0 def

/UIDOffset 800 def

/XUID [1 10 25316] def

/WMode 1 def

1 begincidrange

<8141> <8142> 7887

endcidrange

35 begincidchar

<8143> 8286

<8144> 8274

<814a> 8272

<8387> 7936

<838e> 7937

<< 30 ranges missing >>

endcidchar

endcmap

CMapName currentdict /CMap defineresource pop

end

end

%%EndResource

%%EOF

56 Adobe CMap and CIDFont Files Specification (11 June 93)

The header for a CMap file that uses another is the same as that for a standal-
one CMap file, with the addition of a %%DocumentNeededResources and
an %%IncludedResources comment referring to the CMap being used. A 12-
element dictionary is also established and the begincmap operator is issued.

The important operator in Example 14 is usecmap. It appears in the line

/Ext-RKSJ-H usecmap

You can express the same resource instances in VM without using this opera-
tor (by duplicating the contents of the other file in line), but some implemen-
tations can make more efficient use of CMap resources when one file uses
another than if each file were to be defined separately.

The usemap operator allows one resource instance to refer to the VM struc-
tures already created by another. The amount of VM saved is related to the
relative sizes of the files. If one file creates a structure with 217 CID ranges
(comprising over 8200 characters), and another file can use them by remap-
ping only 37 characters, as in Example 14, VM savings can be substantial.
The usemap operator must appear before any range operation.

After the line with the usecmap operator are lines for defining CMapName
(note the -V to denote the vertical orientation of this CMap file), CMapVer-
sion, UIDOffset, and XUID—all following the same syntax and usage as with
a stand-alone CMap file.

The WMode entry gives the writing mode of the using file. The using file
adopts the codespace, character mappings, and notdefs of the CMap being
used unless they are specifically redefined. It causes an error to try to redefine
the adopted codespace.

Example 14 redefines a single two-character range of input codes using the
begincidrange and endcidrange operators and 35 individual characters
using the begincidchar and endcidchar operators.

The resource instance is created by Example 15:

Example 15 Creating the resource instance

endcmap

CMapName currentdict /CMap defineresource pop

end

end

%%EndResource

%%EOF

which state the instance key and the resource category, as do the similar lines
in the first example.

6 Rearranged Font Tutorial 57

6 Rearranged Font Tutorial

Because they have many characters, Japanese fonts can occupy several mega-
bytes of disk space. Often, a developer will want to produce a set of similar
fonts, each font differing from others by such details as the style of propor-
tional Roman characters, the weight of Kana, or the inclusion of special gaiji
characters not available in the original font.

A rearranged font can produce the effect of multiple versions of the same
original (or template) font, but without the storage overhead of an extra ten or
twenty megabytes. It produces this effect by “borrowing” characters from
other fonts. Rearranged fonts are small in size; Adobe has found that they
typically occupy fewer than 30 kilobytes each.

Rearranged fonts can make use of CID-keyed fonts, existing composite fonts
(also called Japanese Type 1 fonts), Roman Type 1 fonts, and Type 3 fonts. A
software developer can create a rearranged font from an existing font without
being concerned with the format of the font programs that make up the rear-
ranged font. A developer will need to know the character set and encoding of
the font programs from which characters are being borrowed.

This section describes how to produce rearranged fonts, from the standpoint
of the developer who wishes to produce a collection of fonts as variations on
a single template font. After reading it, a developer should be able to con-
struct a rearranged font that incorporates glyphs from several existing fonts.

6.1 Rearranged Font Components

A rearranged font consists of a CMap file that uses two special commands:
beginrearrangedfont and endrearrangedfont. The rearranged font file uses
a slightly different header from a CMap file, and uses an additional comple-
ment of CMap operators to accomplish the rearrangement.

In the rearranged font are named a template font and one or more component
fonts. The template font provides the structure on which the rearranged font
is built, and the component fonts provide the borrowed characters.

Rearranged fonts themselves contain no character data. They describe the
fonts from which the template font is to borrow certain characters, and how
those characters are to be mapped to input codes within the rearranged font’s
codespace. A rearranged font is thus a recipe for creating a new font. The
effect of executing a rearranged font is to create a composite font in VM. The
rearranged font behaves in just the same way as any other CIDFont: the name
of the rearranged font appears on font menus, the font can be downloaded to
a printer, and it can be used with ATM-J.

There are two major restrictions on the use of rearranged fonts.

58 Adobe CMap and CIDFont Files Specification (11 June 93)

• Although a rearranged font file uses CMap operators, its mapping is spe-
cific to the template font being rearranged; it does not have the “general-
ized” nature of a CMap file (which may be used with many different CID-
keyed fonts).

• All component fonts of a rearranged font must be available to the Post-
Script interpreter at findfont time.

6.2 Rearranged Font Example

This section presents an example of a rearranged font. Where statements or
data have been omitted, they are replaced with explanatory text within brack-
ets, like this:

<< text here omitted >>
Like a CMap file, a rearranged font file is a program written in the PostScript
language. The order and syntax of entries is important; Section 7 describes
them in detail.

The example shows several of the rearrangements a developer might want to
make to an existing Japanese language font. It starts with a font named
Jun101-Light-83pv-RKSJ-H. The Jun101-Light “starting” font is referred to
as the template font, because the rearrangements are built on it.

Example 16 is a rearranged font; it makes the following four changes:

1. It replaces the single-byte proportional Roman characters of Jun101-
Light-83pv-RKSJ-H with characters from the Type 1 font Poetica-Chan-
ceryIV.

2. It replaces the punctuation characters of Jun101-Light-83pv-RKSJ-H with
the punctuation characters of ShinseiKai-CBSK-83pv-RKSJ-H.

3. It replaces the Hiragana and Katakana characters of Jun101-Light-83pv-
RKSJ-H with characters from FutoGoB101-Bold-83pv-RKSJ-H and
FutoMinA101-Bold-83pv-RKSJ-H.

4. It adds one row of gaiji from the Type 1 font HSMinW3Gai30.

The template font defines the codespace of a rearranged font. Codespace is
explained in section 5. Characters from all component fonts must conform to
the input codespace of the template font. For example, if the codespace of the
template font has no valid codes assigned between <8100> and <81FF>,
then the input code <8121> (which may be valid in a JIS-encoded font) will
be interpreted as <81> <21> in the rearranged font. As is shown later in the
example, input codes for the borrowed characters from a component font
must be mapped to input codes that are valid for the template font.

6 Rearranged Font Tutorial 59

Example 16 A rearranged font

%!PS-Adobe-3.0 Resource-Font

%%ADOResourceSubCategory: RearrangedFont

%%DocumentNeededResources: procset CIDInit

%%+ font Jun101-Light-83pv-RKSJ-H

%%+ font Poetica-ChanceryIV

%%+ font ShinseiKai-CBSK1-83pv-RKSJ-H

%%+ font FutoGoB101-Bold-83pv-RKSJ-H

%%+ font FutoMinA101-Bold-83pv-RKSJ-H

%%+ font HSMinW3Gai30

%%IncludeResource: procset CIDInit

%%IncludeResource: font Poetica-ChanceryIV

%%IncludeResource: font HSMinW3Gai30

%%BeginResource:Font Jun101-Light-K-G-R-83pv-RKSJ-H

%%Version: 1

/CIDInit /ProcSet findresource begin

%%ADOStartRearrangedFont

/Jun101-Light-K-G-R-83pv-RKSJ-H

[/Jun101-Light-83pv-RKSJ-H

 /Poetica-ChanceryIV

 /ShinseiKai-CBSK1-83pv-RKSJ-H

 /FutoGoB101-Bold-83pv-RKSJ-H

 /FutoMinA101-Bold-83pv-RKSJ-H

 /HSMinW3Gai30

] beginrearrangedfont

% substitute Roman characters with JIS reencoding

1 beginusematrix [1 0 0 1 0 0.15] endusematrix

1 usefont

5 beginbfchar

<27> /quotesingle

<5c> /yen

<60> /grave

<7e> /tilde

<7f> <7f>

endbfchar

4 beginbfrange

<00> <26> <00>

<< 2 ranges omitted >>
<61> <7d> <61>

endbfrange

% substitute punctuation

2 usefont

8 beginbfchar

<815c> <815c>

<< 6 ranges omitted >>
<eb63> <eb63>

endbfchar

60 Adobe CMap and CIDFont Files Specification (11 June 93)

14 beginbfrange

<8141> <8147> <8141>

<< 12 ranges omitted >>
<eb8c> <eb8d> <eb8c>

endbfrange

% substitute hiragana

3 usefont

20 beginbfrange

<8152> <8153> <8152>

<< 18 ranges omitted >>
<ed80> <ed96> <ed80>

endbfrange

% substitute katakana

4 usefont

14 beginbfrange

<8154> <8155> <8154>

<< 12 ranges omitted >>
<ec9f> <ecf1> <ec9f>

endbfrange

% substitute single row of gaiji characters

5 usefont

1 beginbfrange

<f000> <f0ff> 0

endbfrange

endrearrangedfont

end

%%EndResource

%%EOF

Comment Conventions

A rearranged font resource file must begin with the comment characters %!;
otherwise it may not be handled correctly in some operating system environ-
ments. The first two lines in the file are

%!PS-Adobe-3.0 Resource-Font

%%ADOResourceSubCategory: RearrangedFont

The remainder of the first line (after the %!) identifies that file as a rearranged
font resource that conforms to the PostScript language document structuring
conventions version 3.0. Document structuring conventions are explained in
PostScript Language Reference Manual, Second Edition.

The following comment lines state that the CIDInit procset is required, and
lists the set of Japanese fonts from which characters are borrowed.

Example 17 Fonts used in the rearranged font

%%DocumentNeededResources: procset CIDInit

%%+ font Jun101-Light-83pv-RKSJ-H

%%+ font Poetica-ChanceryIV

6 Rearranged Font Tutorial 61

%%+ font ShinseiKai-CBSK1-83pv-RKSJ-H

%%+ font FutoGoB101-Bold-83pv-RKSJ-H

%%+ font FutoMinA101-Bold-83pv-RKSJ-H

%%+ font HSMinW3Gai30

The %%Include construct in the lines following tells spooler and similar soft-
ware to determine whether the required resource is available. If the resource
is not already available in VM—but is available for downloading—then the
spooler should include that resource in-line in the job stream being sent to the
interpreter.

%%IncludeResource: procset CIDInit

%%IncludeResource: font Poetica-ChanceryIV

%%IncludeResource: font HSMinW3Gai30

The %%BeginResource comment informs spoolers and resource managers
that the information that follows is a resource. There is a corresponding
%%EndResource comment at the end of the file. The %%BeginResource
line also states the type of resource (RearrangedFont) and its name (Jun101-
Light-K-G-R-83pv-RKSJ-H). Suggestions for how to name fonts appear in
Appendix A.

%%BeginResource: Font Jun101-Light-K-G-R-83pv-RKSJ-H

The %%Version comment provides the version number of this CMap file.

%%Version: 1

Additional comments are permitted as long as they conform to the document
structuring conventions.

Initializing the CID Procset

Immediately after the header information and before the definition of the
rearranged font, a findresource is executed on the file CIDInit, which is one
of the system support files installed on the host or printer hard disk. This
ensures that the routines necessary to process the rearranged font file are
present in VM. An end operator corresponding to this begin appears at the
end of the file.

/CIDInit /ProcSet findresource begin

Appendix A contains an explanation of the CIDInit (and other) system sup-
port files.

62 Adobe CMap and CIDFont Files Specification (11 June 93)

Component Fonts

The fonts that comprise a rearranged font are called component fonts. The
beginrearrangedfont operator defines which fonts become component fonts
and states the name of the resultant rearranged font. There is a corresponding
endrearrangedfont operator near the end of the file.

The beginrearrangedfont operator takes two operands: a name object that is
the name of the rearranged font and a component fonts array that is a list of
component fonts, portions of which comprise the rearranged font. All
component fonts for a rearranged font must be present on a PostScript
interpreter when the font is executed. In the example, the
beginrearrangedfont statement looks like this:

Example 18 Component fonts of the rearranged font

%ADOStartRearrangedFont

/Jun101-Light-K-G-R-83pv-RKSJ-H

[/Jun101-Light-83pv-RKSJ-H

/Poetica-ChanceryIV

/ShinseiKai-CBSK1-83pv-RKSJ-H

/FutoGoB101-Bold-83pv-RKSJ-H

/FutoMinA101-Bold-83pv-RKSJ-H

/HSMinW3Gai30

] beginrearrangedfont

The first line, /Jun101-Light-K-G-R-83pv-RKSJ-H, is the name of the
rearranged font that results from executing this file. See appendix A for sug-
gestions about font naming, which is very important to the proper execution
of CID-keyed fonts.

The array operand begins with the name of the template font. All rearrange-
ments are performed on a logical copy of this font. Succeeding elements of
the array are font names, each of which contain characters that will be bor-
rowed for the specific rearrangements described.

Because this operand of beginrearrangedfont is an array, each component
font can be referred to by its position in the array, with the template font
considered to be font 0. The usefont operator, and the beginusematrix and
endusematrix operators (which appear several lines later in the file), refer to
the fonts in this array by number. The beginrearrangedfont component fonts
array must be specified before any usefont, beginusematrix, or
endusematrix operator is used.

Note If you wish to use the same component font in two (or more) different ways, it
must appear in the beginrearrangedfont array more than once. For exam-
ple, if you wish to use a component font both with and without a transforma-
tion matrix, that font must appear twice in the array. This is because the
usefont, beginusematrix, or endusematrix operators identify a component

6 Rearranged Font Tutorial 63

font by its position in the array, and all instances of the font at that position
are modified accordingly. To use a component font both with and without a
matrix, therefore, requires two separate instances of that font in the array.

In this example:

• The name of the resulting rearranged font is Jun101-Light-K-G-R-83pv-
RKSJ-H.

• The template font is Jun101-Light-83pv-RKSJ-H.

• Proportional Roman characters are borrowed from Poetica-ChanceryIV.

• Punctuation characters are borrowed from ShinseiKai-CBSK1-83pv-
RKSJ-H.

• Hiragana characters are borrowed from FutoGoB101-Bold-83pv-RKSJ-H.

• Katakana characters are borrowed from FutoMinA101-Bold-83pv-RKSJ-
H.

• New gaiji characters are borrowed from HSMinW3Gai30.

Replacing and Adjusting Roman Characters

The rearranged font in this example specifies that the Roman characters in
the template font should be replaced by characters from the Poetica-Chan-
ceryIV Type 1 font, and that the borrowed Roman characters should be
adjusted by changing their baseline. The default value for the Roman charac-
ter baseline in a Japanese font is 120/1000 em. This value might be inappro-
priate for the substitute Roman characters in a particular font. You may also
wish to change the baseline for the default Roman characters. In the example,
the baseline used to position the characters in relation to the Japanese charac-
ters is to be raised by 150/1000 em. The following code performs this adjust-
ment:

1 beginusematrix [1 0 0 1 0 0.15] endusematrix

The first argument is the index of the font in the component fonts array to
which the matrix adjustment should be applied (in this case, the first element
in the array, Poetica-ChanceryIV). Every character borrowed from that par-
ticular component font will use the transformation specified by the matrix.

The effect of the beginusematrix and endusematrix operators is equivalent
to applying makefont to the base font, using the same matrix. That is, the
resulting FontMatrix is the result of concatenating the font’s original Font-
Matrix with the matrix specified by beginusematrix and endusematrix, in
that order. (Matrix multiplication is not commutative.)

64 Adobe CMap and CIDFont Files Specification (11 June 93)

The beginusematrix and endusematrix operators also can be used with
characters from a Japanese language font, for example, to achieve rotation, or
artificial skewing or obliquing. The matrix commands are not restricted to
proportional Roman characters; this example, however, uses them that way.

Because the template font is shift JIS-encoded, the Type 1 proportional
Roman characters also will be shift JIS-encoded. When a Roman font is shift
JIS-encoded, a small number of characters differ from the standard ASCII
encoding—the backslash becomes the yen sign, and the shift JIS tilde is used
in place of the ASCII tilde.

The usefont operator specifies the font in the component fonts array from
which characters are borrowed; in this case, the first element in the array,
Poetica-ChanceryIV.

1 usefont

All operators in the file that follow, until any succeeding usefont, now
borrow characters only from font 1 in the component fonts array—Poetica-
ChanceryIV.

Note Because of the many begin and end forms of CMap operators, this document
uses a tilde ~ to denote that the begin and the end prefixes are left off. For
example, both the beginusematrix and the endusematrix operators can be
referred to together as the ~usematrix operators. This form is not used when
only one or the other operator is meant.

A usefont must appear before any ~bfchar or ~bfrange operator is specified.

The code mappings that follow the usefont explicitly identify by input code
the Roman characters that are to be substituted in the template font, and the
individual characters—and ranges of characters—from the component font
that are to be used to replace them. All input codes must be valid in the
codespace of the template font. Input can be single codes or ranges of codes,
and the outputs can be character codes or names.

The first five single character substitutions implement the shift JIS reencod-
ing. For example the input code <5c> in the template font is made to corre-
spond to the yen symbol and so on. The beginbfchar and endbfchar
operators bracket one or more single characters being drawn from a Type 1 or
Type 3 base font (hence the bf). The first element on each line is the input
code of the template font; the second element is the code or name of the char-
acter in the Type 1 font that will correspond to that code in the rearranged
font.

Example 19 Base font characters used in the rearranged font

5 beginbfchar

<27> /quotesingle

6 Rearranged Font Tutorial 65

<5c> /yen

<60> /grave

<7e> /tilde

<7f> <7f>

endbfchar

The remaining four range substitutions complete the Roman character substi-
tution. The first and second elements in each line are the beginning and
ending valid input codes for the template font; the third element is the begin-
ning character code for the range of proportional Roman characters being
assigned to that template input range.

Example 20 Ranges of base fonts

4 beginbfrange

<00> <26> <00>

<28> <5b> <28>

<5d> <5f> <5d>

<61> <7d> <61>

endbfrange

Note Roman characters placed in a Japanese font that has the 83pv-RKSJ-H char-
acter set and encoding fall in the range of <00> to <7f>.

Replacing Punctuation Characters

After the proportional Roman characters have been added to the rearranged
font, the operator

2 usefont

signifies that operations are now to be performed on font 2 of the component
fonts array—in this case, ShinseiKai-CBSK1-83pv-RKSJ-H.

The code mappings which in Example 21 explicitly identify the punctuation
characters to be substituted in the template font, and the individual characters
and ranges of characters from the component font which will be used to
replace them.

Example 21 Substituting punctuation characters

8 beginbfchar

<815c> <815c>

<< 6 ranges omitted >>
<eb63> <eb63>

endbfchar

14 beginbfrange

<8141> <8147> <8141>

<< 12 ranges omitted >>
<eb8c> <eb8d> <eb8c>

endbfrange

66 Adobe CMap and CIDFont Files Specification (11 June 93)

Replacing Hiragana and Katakana Characters

The next code fragment from the example substitutes the Hiragana characters
in the template font with the same Hiragana characters from another font.
Typically, this type of rearrangement substitutes characters of a different
style—say, Kana Large or Kana Old Style—from those that are already
included in the template font.

The usefont operator indicates that rearrangements are to be drawn from
font 3 of the component fonts array, /FutoGoB101-Bold-83pv-RKSJ-H.

3 usefont

The code mappings that follow explicitly identify the ranges of Hiragana
characters to be replaced in the template font and the corresponding ranges in
the component font from which characters are to be borrowed.

Example 22 Replacing Hiragana

20 beginbfrange

<8152> <8153> <8152>

<< 18 ranges omitted >>
<ed80> <ed96> <ed80>

endbfrange

The usefont operator again points to font 4 in the component fonts array, /
FutoMinA101-Bold-83pv-RKSJ-H. This time, the rearranged font file substi-
tutes the full set of Katakana characters in the template font.

The code mappings that follow explicitly identify the ranges of Katakana
characters to be replaced in the template font and the corresponding ranges in
the component font from which characters are to be borrowed.

Example 23 Replacing Katakana

4 usefont

14 beginbfrange

<8154> <8155> <8154>

<< 12 ranges omitted >>
<ec9f> <ecf1> <ec9f>

endbfrange

Adding Gaiji Characters

Most character set and encoding combinations used in Japan today reserve a
number of rows for gaiji characters. The size and portion of the code space
available for such gaiji characters varies with character set and encoding
combination. The Apple® Macintosh® 83pv-RKSJ combination, for example,
reserves 12 rows (<F0>-<FB>) for gaiji characters. Each row can contain up
to 188 characters.

7 CMap Reference 67

The usefont operator selects font 5 in the component font array, in this case /
HSMinW3Gai30, a Type 1 font that contains a selection of gaiji characters.

5 usefont

The code mappings that follow explicitly identify the ranges of UserGaiji
space into which to substitute the gaiji characters borrowed from that compo-
nent font.

1 beginbfrange

<f000> <f0ff> 0

endbfrange

The range <f000> to <f0ff> provides 256 character positions—the same
number of character positions available in a typical Roman font. The most
effective way to add gaiji is to “drop in” the 256-character gaiji font into the
UserGaiji row. Thus, character 32 in the gaiji font in this situation appears at
position <f020>.

Building the Font

The endrearrangedfont operator ends the rearranged font information and
defines the new Japanese font in VM by performing the rearrangements as
described, and registering the resulting Japanese font for system use.

The comment %%EndResource conforms to the document structuring con-
ventions.

The operator end concludes the procset initiated after the header.

endrearrangedfont

end

%%EndResource

%%EOF

7 CMap Reference

This section contains detailed information about the operators that can be
used in a CMap file. It is divided into four parts.

First, there is a discussion of file nomenclature and lexical elements. Second,
there is a summary of operators, organized into groups of related functions.
The summary is intended to help locate the operators needed to perform spe-
cific tasks. Third, there is a section that describes the organizational require-
ments of a CMap file. Fourth, there is a detailed description of all operators,
organized alphabetically by operator name. Because of the many begin/end
pairs of operators, operators are listed alphabetically under their begin ver-
sions.

68 Adobe CMap and CIDFont Files Specification (11 June 93)

Note The word operators as used in this section refers to a set of executable com-
mands that are defined in the CIDInit procset resource. While they may look
like and have syntax similar to PostScript language operators, they are not
part of the PostScript language.

Each operator is presented in the following format:

operator operand1 operand2…operandn operator result1…resultm

A detailed explanation of the operator appears here.

Example

An example of the use of the operator appears here. The symbol ⇒ desig-
nates the values (if any) left on the operand stack by the example.

Errors

A list of possible errors that this operator might execute appears here. Please
note, however, that there are font interpreters that are not PostScript interpret-
ers—ATM-J, for example, is not a full PostScript interpreter. Only when exe-
cuting a CMap file containing errors on a PostScript interpreter will the file
produce predictable error behavior.

See Also

A list of related operators may appear here.

At the head of an operator description, operand1 through operandn are the
operands that the operator requires, with operandn being the topmost operand
on the stack. The operator pops these objects from the stack and consumes
them. After executing, the operator leaves the objects result1 through resultm
on the stack, with resultm being the topmost element.

7.1 CMap File Nomenclature and Lexical Elements

Section 5 discussed CMap files, which control the codespace and encoding of
a CID-keyed font. Section 6 explained rearranged fonts, which use CMap
commands and borrow characters from various CID-keyed fonts to create a
new font.

As used in Operator Summary and Operator Details, the nature of the source
and destination argument differs depending on whether the CMap commands
are acting as part of a rearranged font. These source and destination codes
also can be different in length within a single operation.

7 CMap Reference 69

srcCode

In CMap files, srcCode refers to the input codes that are to be mapped into a
variety of character selectors: dstCodes, dstCharnames, or dstCIDs. The
<xxxx> hexadecimal string notation specifies single- or multiple-byte input
codes, where each pair of hexadecimal digits represents a byte of the code.

When CMap commands are used as part of a rearranged font, srcCode(s)
refer to the character codes in the template font that will be replaced in the
rearranged font with characters borrowed from one of the component fonts.

dstCode or dstCharName

In CMap files, dstCodes, dstCharNames, or dstCIDs represent the selector
that will be used to extract a glyph from a font resource. Table 1 shows how
various selectors access a glyph.

Table 1 Relationship of input code to selector

Selector Font Type

CID (integer) CIDFont

Single-byte code (hex string) Type 1 font program

Name (name object) Type 1 font program

Single-byte code (hex string) Type 3 font program

Name (name object) Type 3 font program

Single-byte code (hex string) Type 0 font program

Double-byte code (hex string) Type 0 font program

When CMap commands are being used as part of a rearranged font, the dstC-
IDs, dstCodes, or dstCharNames specify those characters from the compo-
nent font that are to be selected and shared by the rearranged font. Table 2
shows the lexical elements that are supported in CMap files and rearranged
fonts.

Table 2 PostScript language lexical elements

Representation Meaning

%… comments

nnn integer and real numbers

/abc literal name objects

(abc) string objects

<xxxx> hexadecimal string notation

70 Adobe CMap and CIDFont Files Specification (11 June 93)

[...] array syntax

operator only the operators described in this section may be used

7.2 Operator Summary

Operators in CMap files fall into five groups, based on usage.

General Operators

/CMapName usecmap – uses another CMap’s VM resource
fontID usefont – specifies font used subsequently
fontID beginusematrix –

[a b c d tx ty] endusematrix – transformation matrix to use with font
int begincodespacerange –

srcCode1 srcCode2 endcodespacerange – sets valid input codes
– begincmap –
– endcmap – brackets CMap definition in file

Operators That Use Character Names
or Character Codes as Selectors

int beginbfchar –
srcCode dstCode or

srcCode dstCharname endbfchar – specifies one base font glyph
int beginbfrange –

srcCodeLo srcCodeHi dstCodeLo or
srcCodeLo srcCodeHi

[/dstCharname1…/dstCharnamen]
endbfrange – specifies range of base font glyphs

Operators That Use CIDs as Selectors

int begincidchar –
srcCode dstCID endcidchar – specifies one CIDFont character

int begincidrange –
srcCodeLo srcCodeHi dstCIDLo endcidrange – specifies range of CIDFont characters

notdef Operators

int beginnotdefchar –
srcCode dstCID endnotdefchar – specifies one notdef character

int beginnotdefrange –
srcCodeLo srcCodeHi dstCIDLo endnotdefrange – specifies range of notdef characters

Rearranged Font Operators

While not actually CMap operators, rearranged font operators are listed here
for completeness.

/newFontName [component fonts array] beginrearrangedfont – identifies fonts used in rearrangement

7 CMap Reference 71

– endrearrangedfont – font built on an existing template

7.3 CMap File Overview

Several parts of a CMap file must appear in a particular order. This section
provides that organizational information and a brief explanation of why the
ordering must take place. A CMap file must comply with the following rules:

1. Header comments must appear first. In particular, the first line of the file
must be constructed as explained in sections 5 and 6.

2. The CIDInit procset findresource call appears immediately after the
header information.

3. The begincmap operator must appear before any range operators. It and
the endcmap operator (see below) bracket the entire CMap dictionary.

4. The usecmap operator (CMap files that use another) appears after the
begincmap operator and before any range operators.

5. The begincodespacerange operator must be the first range operator in
the file. It must appear after the begincmap operator. It is implicit in a
CMap file that uses another and in a rearranged font.

6. The endcmap operator must be the final operator in the file. It and the
begincmap operator bracket the CMap dictionary.

7.4 Operator Details

This section contains detailed information about the operators supported in
PostScript language CMap files. If the characters (RF) appear at the far right
of the operator definition, it means that the operator applies exclusively to
rearranged fonts.

beginbfchar int beginbfchar –
endbfchar srcCode dstCode endbfchar–

srcCode /dstCharname endbfchar –

The beginbfchar and endbfchar operators map int number of individual
input codes (srcCode) to a corresponding number of individual character
codes (dstCode) or character names (dstCharname), where int can be ≤ 100.
The dstCode can be drawn from font programs of Type 0, 1, or 3; dstChar-
name can be drawn from font programs of Type 0 or 1. The base font that
contains the glyphs must have been specified by a previous usefont call.

srcCode and dstCode must be specified as hexadecimal strings. dstCharname
must be a PostScript language name object.

72 Adobe CMap and CIDFont Files Specification (11 June 93)

There can be a maximum of 100 lines in each ~bfchar set.

Use the ~bfchar operators when the mappings to be described are organized
noncontiguously, for example, when you want to define the relationship
between sets of individual input codes and individual glyphs rather than con-
tiguous ranges of codes and glyphs.

Example

2 usefont

4 beginbfchar

<27> /quotesingle

<5c> /yen

endbfchar

Errors

stackunderflow, syntaxerror, typecheck

See Also

beginbfrange, usefont

beginbfrange int beginbfrange –
endbfrange srcCodeLo srcCodeHi dstCodeLo endbfrange –

srcCodeLo srcCodeHi [/dstCharName1../dstCharNamen] endbfrange –

The beginbfrange and endbfrange operators map int number of ranges of
input codes to a corresponding range of character codes or names, where int
can be ≤ 100. The argument srcCodeLo is the start of a given range of input
codes; srcCodeHi is the end of that range. The argument dstCodeLo is the
start of the corresponding character code range; there is no need to specify
the upper limit of the range. Alternatively, an array of character names can be
specified to correspond to the range of input codes. All character names spec-
ified in this way must be fully enumerated.

Values for srcCodeLo and srcCodeHi must be in hexadecimal notation. The
dstCode can be drawn from font programs of Type 0, 1, or 3; dstCharname
can be drawn from font programs of Type 0 or 1. The base font that contains
the glyphs must have been specified by a previous usefont call.

There can be a maximum of 100 lines in each ~bfrange set.

Use the ~bfrange operator when the mappings to be described are organized
in contiguous ranges.

7 CMap Reference 73

Errors

stackunderflow, syntaxerror, typecheck

See Also

beginbfchar, usefont

begincidchar int begincidchar –
endcidchar srcCode dstCID endcidchar –

The operators begincidchar and endcidchar map int number of individual
valid input codes to a corresponding number of individual character IDs,
where int can be ≤ 100. The argument srcCode is an input code expressed as
a hexadecimal string; the argument dstCID is a character ID expressed as an
integer.

There can be a maximum of 100 entries in each ~cidchar set.

Use the ~cidchar operators when the mappings to be described are organized
noncontiguously, for example, when you want to define the relationship
between sets of individual input codes and individual character IDs rather
than contiguous ranges of codes and character IDs.

Errors

stackunderflow, rangecheck, typecheck

See Also

begincidrange

begincidrange int begincidrange –
endcidrange srcCodeLo srcCodeHi dstCIDLo endcidrange –

The begincidrange and endcidrange operators map int number of ranges of
input codes to a corresponding range of character IDs, where int can be ≤
100. The argument srcCodeLo is the start of a given range of input codes, and
srcCodeHi is the end of that range. The argument dstCIDLo is the start of the
corresponding range of character IDs; there is no need to specify the upper
limit of the range. Ranges may overlap, but succeeding ranges supercede pre-
vious ranges. Ranges should appear in ascending order. Values for srcCodeLo
and srcCodeHi must be in hexadecimal notation.

There can be a maximum of 100 entries in each ~cidrange set.

74 Adobe CMap and CIDFont Files Specification (11 June 93)

Use the ~cidrange operators when the mappings to be described are orga-
nized in contiguous ranges.

Example

100 begincidrange

<20> <7e> 231

<8140> <817e> 633

<8180> <8188> 696

<8189> <8189> 7478

<818a> <81ac> 706

<< 90 ranges omitted >>

<e080> <e092> 5563

<e093> <e093> 7838

<ea80> <ea9c> 7443

<ea9d> <ea9d> 7886

<ea9e> <ea9e> 7473

endcidrange

Errors

stackunderflow, rangecheck, typecheck

See Also

begincidchar

begincmap – begincmap –
endcmap – endcmap –

These operators must enclose that portion of the CMap file that contains the
code mapping information. They produce objects in the CMap resource in
VM that will subsequently be used to map character codes to font IDs and
character selectors.

begincodespacerange int begincodespacerange –
endcodespacerange srcCodeLo srcCodeHi endcodespacerange –

These operators define as valid int number of ranges of input codes, where int
can be ≤ 100. The arguments srcCodeLo and srcCodeHi are expressed in
hexadecimal notation.

Input codes can consist of one, two, three, or more hexadecimal bytes. The
number of bytes in the input code establishes the dimensionality of the
codespace range or region. For example, one-byte input codes describe a

7 CMap Reference 75

linear region of valid input codes, two-byte codes describe a rectangular
region of valid input codes, and so forth. Section 5 describes codespace more
extensively.

There can be a maximum of 100 entries in each ~codespacerange set.

Codespace regions need not be contiguous but cannot overlap. The definition
of the codespace must precede any mapping of input codes to characters.

In rearranged fonts, the codespace of the template font defines the codespace
for the rearranged font.

Example

4 begincodespacerange

<00> <80>

<8140> <9FFC>

<A0> <DF>

<E040> <FBFC>

endcodespacerange

Errors

stackunderflow, rangecheck, typecheck

beginnotdefchar int beginnotdefchar –
endnotdefchar srcCode dstCID endnotdefchar –

The operators beginnotdefchar and endnotdefchar map int number of indi-
vidual valid input codes to a corresponding number of individual character
IDs, where int can be ≤ 100. Each character ID references a notdef character.
A font developer can use the ~notdefchar operators to map otherwise valid
input codes to specific notdef characters within the CIDFont.

The argument srcCode is an input code expressed as a hexadecimal string;
the argument dstCID is a character ID expressed as an integer.

Every CID-keyed font must have at least one notdef character defined. This
notdef character is referred to by CID 0. Invalid input codes (input codes
which are outside of codespace) are automatically mapped to CID 0.

There can be a maximum of 100 lines in each ~notdefchar set.

The effect produced by showing a notdef character is left to the discretion of
the font designer.

Note: The conditions under which a notdef character is shown are discussed
in section 5.

76 Adobe CMap and CIDFont Files Specification (11 June 93)

Errors

stackunderflow, rangecheck, typecheck

See Also

beginnotdefrange

beginnotdefrange int beginnotdefrange –
endnotdefrange srcCodeLo srcCodeHi dstCID endnotdefrange –

The operators beginnotdefrange and endnotdefrange map int number of
ranges of valid input codes to a corresponding number of character IDs,
where int can be ≤ 100. Each range of input codes maps to the same character
ID; if a character ID falling within the notdef range is presented to the CMap
resource instance, which for some reason (such as an empty interval) cannot
show a glyph, then the notdef character defined here will be shown instead. A
font developer can use the ~notdefrange operators to map ranges of other-
wise valid input codes to specific notdef characters within the CIDFont.

The argument srcCodeLo is the start of a range of input codes; srcCodeHi is
the end of that range. Input codes are expressed as hexadecimal strings.
dstCID is the character ID to which all input codes in the range are mapped.
It is expressed as a number.

Every CID-keyed font must have at least one notdef character defined. This
notdef character is referred to by CID 0. Invalid input codes (input codes that
are outside of codespace) are automatically mapped to CID 0. An undefined
CID may occur if Supplement numbers are not the same between a CMap
and a CIDFont file; a notdef character results.

There can be a maximum of 100 entries in each ~notdefrange set.

The effect produced by showing a notdef character is left to the discretion of
the font designer.

Note: The conditions under which a notdef character is shown are discussed
in section 5.

Example

2 beginnotdefrange

<00> <1f> 1

<fc> <ff> 231

endnotdefrange

7 CMap Reference 77

Errors

stackunderflow, rangecheck, typecheck

See Also

beginnotdefchar

beginrearrangedfont /newFontName [component fonts array] beginrearrangedfont – (RF)
endrearrangedfont endrearrangedfont –

The beginrearrangedfont and endrearrangedfont operators bracket the
definition of a rearranged CID-keyed font, and can appear only in CMap files
describing a rearranged font. Rearranged fonts are discussed in section 6.

The parameter newFontName is the name given to the resulting rearranged
font. The component fonts array is a list of fonts that contribute characters to
the rearranged font. The zero-th element of the component fonts array is the
template font, which controls the codespace of the rearranged font. Succeed-
ing elements of the array are font names, each of which contain characters
that will be borrowed for specific rearrangements.

The operators usefont and beginusematrix operate on fonts selected from
this array by position; each takes an integer argument that is an index into this
array.

Each of the fonts named in the component fonts array must be present on the
PostScript interpreter for a rearranged font to work.

If you wish to use the same component font in two (or more) different ways,
it must appear in the beginrearrangedfont array more than once. For exam-
ple, if you wish to use a component font both with and without a transforma-
tion matrix, that font must appear twice in the array.

To do a rearrangement, you must know the codespaces of the template font
and all component fonts.

Example

%ADOStartRearrangedFont

/Jun101-Light-K-G-R-83pv-RKSJ-H

[/Jun101-Light-83pv-RKSJ-H

 /Poetica-ChanceryIV

 /ShinseiKai-CBSK1-83pv-RKSJ-H

 /FutoGoB101-Bold-83pv-RKSJ-H

 /FutoMinA101-Bold-83pv-RKSJ-H

 /HSMinW3Gai30

] beginrearrangedfont

78 Adobe CMap and CIDFont Files Specification (11 June 93)

Errors

stackunderflow, syntaxerror, typecheck, VMerror

See Also

usefont, beginusematrix

beginusematrix fontID beginusematrix –
endusematrix [a b c d tx ty] endusematrix –

These operators bracket the specification of a transformation matrix to be
applied to the font within the component fonts array, specified by fontID.
They provide a mechanism to apply rotational, obliquing, narrowing, and
expanding transformations, and baseline translations to a given font. The
effect of the beginusematrix and endusematrix operators is equivalent to
applying makefont to the base font, using the same matrix.

The units of the transformation matrix are expressed in character coordinate
space. For example, to move a baseline up by .150 em, you would use the
matrix [1 0 0 1 0 0.15], with ty being 150/1000. See Adobe Type 1 Font
Format for a complete explanation of the FontMatrix.

The ~usematrix operators can only be used after the beginrearrangedfont
operator has already been called, which specifies the component fonts array
for a particular rearrangement. The fontID argument to beginusematrix is a
zero-based index into this array; however, the value of fontID must be greater
than 0 (the zero-th element is a template font). The ~usematrix operators fail
if there has been no prior call to beginrearrangedfont (syntaxerror) or if
fontID is out of range (rangecheck).

Example

This example substitutes the “A” hiragana and katakana characters in
Ryumin-Light-83pv-RKSJ-H with those of MyKana-83pv-RKSJ-H. The
baseline of MyKana-83pv-RKSJ-H is raised slightly using the ~usematrix
operators.

/MyKanjiFont

[/Ryumin-Light-83pv-RKSJ-H /MyKana-83pv-RKSJ-H] beginrearranged-

font

1 beginusematrix [1 0 0 1 0 0.1] endusematrix

1 usefont

2 beginbfchar

<82a0> <82a0> % hiragana-"A"

<8341> <8341> % katakana-"A"

endbfchar

endrearrangedfont

7 CMap Reference 79

Errors

stackunderflow, typecheck, syntaxerror, rangecheck

usecmap /CMapName usecmap

The usecmap operator allows one resource instance to refer to the structures
already created by another. The amount of VM saved can be substantial. The
argument /CMapName is the name of the CMap resource instance that is
being referred to. The usecmap operator incorporates the codespace and
code mappings from that file into its own.

The usecmap operator must precede any specification of code mappings.

If the CMap file being used contains character code mappings that have been
described in the using file, the definitions in the using file are ignored (essen-
tially, they are overridden). CMap files can be nested to five levels.

Errors

stackunderflow, typecheck, undefinedfilename, VMerror

usefont fontID usefont –

The usefont operator is used after the beginrearrangedfont operator to
specify a font to be used for a series of subsequent operations. The beginre-
arrangedfont operator specifies an array of component fonts for a particular
rearrangement. The fontID argument to usefont is a zero-based index into
this array (the zero-th element is the template font).

In compatibility mode operation, the usefont operator fails if there has been
no prior call to beginrearrangedfont (syntaxerror) or if fontID is out of
range (rangecheck).

Errors

stackunderflow, typecheck, rangecheck

80 Adobe CMap and CIDFont Files Specification (11 June 93)

81

APPENDIX A

Installing CID-Keyed Fonts
on PostScript Interpreters

This appendix tells you what you need to know to install CMap and CIDFont
resources on a PostScript interpreter. Fonts of CIDFontType 0 are designed
to be installed into a file system, such as that on an external storage device
(hard disk) of a printer or host computer, or to be downloaded to VM.

CID-keyed fonts may be installed manually or with an installation program,
at the discretion of the developer. An installer program can ensure that
version numbers are properly checked and files modified correctly.

When you have finished reading this appendix, you will know about the files
required to be installed, file modifications and their effects, and how to name
files so that they work correctly.

A.1 PostScript Interpreter Requirements

There are two requirements for an interpreter to be able to run CID-keyed
fonts of CIDFontType 0. The first requirement is that the PostScript inter-
preter must support Type 0 composite fonts. A PostScript interpreter can
support Type 0 composite fonts if it is a Level 1 interpreter with Composite
Font extensions or if it is a Level 2 interpreter.

The second requirement is that the PostScript interpreter must have access to
a set of CID-keyed fonts and other files. Some of these other files are
executed when the interpreter starts up.

A.2 Disk Organization

This section describes files that you will either need to install or to modify.

There are two classes of files that must be present on the external hard disk.
The first class is made up of system support files. System support files rede-
fine the behavior of particular PostScript operators so that CID-keyed fonts
work properly. The second class is made up of CIDFonts and CMaps. Some
of these files are read-only; others are readable and writable under certain
conditions. This section explains these two groups of files.

82 Appendix A: Installing CID-Keyed Fonts on PostScript Interpreters (11 Jun 93)

Note There may be other files installed in a device’s file system. If so, these other
files must not be moved or modified.

System Support Files

These five files must be present in order to use CID-keyed fonts; Adobe
supplies them to developers. See Appendix C for information on how to
obtain them. The Sys/Start file should be present on most printer systems
(other kinds of systems can have a different startup file). It may need modifi-
cation at installation time. See section A.3, “Installation Requirements,” for
more information about these files and their contents.

Example A.1 System support files

Sys/Start
Resource/ProcSet/CIDInit
FS/Level1
FS/Level2
fonts/NotDefFont

There are three kinds of startup files for PostScript interpreters. Printers
generally use a file called Sys/Start. The Display PostScript™ system uses a
file called dpsstartup.ps, and the default start file for the configurable
PostScript interpreter (CPSI) is called startup.ps. The exact file name may
vary in location on the disk and by manufacturer. In each case, however, the
file’s purpose is to initialize the VM state—for example, by running
particular procsets. The examples of system support files here are drawn from
printers.

CID-keyed Data Files (Examples)

As described in section 2, a CID-keyed font system is made up of a CIDFont
file and a CMap file. All CMap files, no matter what language group (Japa-
nese, Korean, Chinese, and so forth) must appear in a CMap/ directory, and
CIDFont files appear in a CIDFont/ directory. The location of resources
should follow the standard convention used by the resource machinery for
that product. In printers, this is generally resource/category/instance, for
example, Resource/CMap/83pv-RKSJ-H, or Resource/CIDFont/Ryumin-
Light. In CPSI and Display PostScript systems, this is typically %genericre-
souce%category/instance, for example, %genericresource%CMap/83pv-
RKSJ-H.

The files in Table A.1 are examples of data files that a printer’s hard disk may
include. The filenames are the Japanese language CMap files that Adobe
supplies (the file MyCMap represents an additional file that a developer may
have created).

 A.2 Disk Organization 83

Table A.1 Standard Japanese language CMap data files

CMap CharSet Encoding Direction

83pv-RKSJ-H Macintosh Roman Kana Shift JIS H/V

Add-RKSJ-H Fujitsu® Roman Kana Shift JIS H
Add-RKSJ-V Fujitsu Roman Kana Shift JIS V
Add-H Fujitsu JIS H
Add-V Fujitsu JIS V

Ext-RKSJ-H NEC® PC Roman Kana Shift JIS H
Ext-RKSJ-V NEC PC Roman Kana Shift JIS V
Ext-H NEC PC JIS H
Ext-V NEC PC JIS V

EUC-H JIS-83 Extended Unix Code H
EUC-V JIS-83 Extended Unix Code V

RKSJ-H JIS-83 Roman Kana Shift JIS H
RKSJ-V JIS-83 Roman Kana Shift JIS V
H JIS-83 JIS H
V JIS-83 JIS V

NWP-H NEC Bungo JIS H
NWP-V NEC Bungo JIS V

WP-Symbol Special Roman Kana Shift JIS H

Roman Special Roman Kana Shift JIS H
Katakana Special Roman Kana Shift JIS H
Hankaku Special Roman Kana Shift JIS H

Additional files may also appear.

CIDFont files go into a /CIDFont directory. The location of resources should
follow the standard convention used by the resource machinery for that
product, for example, Resource/CIDFont/Ryumin-Light.

Rearranged fonts appear in the CIDFont directory.

Ryumin-Light
GothicBBB-Medium
MyCIDFont

Additional files may also appear.

84 Appendix A: Installing CID-Keyed Fonts on PostScript Interpreters (11 Jun 93)

A.3 Installation Requirements

This section describes the installation requirements for CID-keyed fonts.
Each developer must create an installation strategy that meets the require-
ments outlined in this section. Installation may be manual or by an installa-
tion program that a developer writes (or by any other method a developer
wishes). The installation process must ensure that

• all required system support files are present on the hard disk;

• the most recent version of each file is installed;

• the Sys/Start file is appropriately modified (if required); and

• the CMap/ and CIDFont/ files selected by the user are installed.

In addition to any CMap/ and CIDFont/ files a user may want to install, the
installer must check for, install, or modify the following system support files:

Sys/Start
Resource/ProcSet/CIDInit
FS/Level1
FS/Level2
fonts/NotDefFont

Note To access any file beginning with Sys/, you must first exit the server loop. An
installer program should send PostScript language code to the interpreter to
exit the server loop before it attempts any operation (read or write) on a Sys/
file. For a complete explanation of the server loop, see the PostScript
Language Reference Manual, Second Edition.

A.3.1 Version Numbers for Support Files

During the installation process, support files with earlier version numbers
must be replaced by support files with later version numbers. Each support
file supplied by Adobe Systems (with the exception of Sys/Start) contains a
version number comment within its first ten lines. Version numbers within the
file make it easy for an installation program to ascertain which files must be
replaced during installation.

Adobe recommends the following algorithm for use by installation programs.

1. Check the names of any system support files currently on the hard disk,
and add any that are missing. The Sys/Start file requires special handling.
See section A.3.3, “Modifying the Startup File,” for information on that
file.

 A.3 Installation Requirements 85

2. Check the version number of any file with the same name as a system
support file, but which is already on the hard disk. If the version number is
missing, or is older than the version being installed, then the older version
must be overwritten by the newer version.

Note The version number of system support files with this release is 1. All version
numbers for system support files are assigned by Adobe Systems.

Each support file has its own progression of version numbers; the installer
program must compare the version number of each file separately with the
version it is installing.

A.3.2 Accessing a Version Number

The version number of a system support file appears within the first ten lines
of that file. Example A.2 shows the header for the file Sys/CIDInit.

Example A.2 Example header in Sys/CIDInit

%!PS-Adobe-3.0 Resource-procset
%%BeginResource: procset CIDInit
%%Title: CIDInit
%%Version: 1

In this example, the version number of the file appears in line 4:
%%Version: 1. A simple parser can be written so that the installing
program can scan the first ten lines of a file for this comment in order to
extract the version number.

A.3.3 Modifying the Startup File

The Sys/Start file is a system support file required for proper execution of
CID-keyed fonts and other PostScript language programs running from
external storage devices attached to printers and hosts. It is the first file run at
start time. Sys/Start must be modified to enable the system to run CID-keyed
fonts. While the information here is based on a printer installation, the startup
file for the Display PostScript system or CPSI would do something similar.

Unlike the other system support files, Sys/Start may already have been modi-
fied by previous software installations, and the user will probably want those
modifications retained after the CIDFont installation process. It is the respon-
sibility of the installer, therefore, to modify the Sys/Start file for use by CID-
keyed fonts without removing previous modifications.

Note An installation procedure can encounter a Sys/Start file that has already been
modified to work with CID-keyed fonts.

86 Appendix A: Installing CID-Keyed Fonts on PostScript Interpreters (11 Jun 93)

An installer program must make two modifications to the Sys/Start file and
can optionally make a third.

1. The installer must insert PostScript language code that runs either the file
FS/Level1 or FS/Level2. These files ensure equivalent behavior for CID-
keyed fonts on both Level 1 and Level 2 PostScript interpreters.

2. The installer must insert PostScript language code that runs the program
found in the CIDInit file. This file creates the Procset resource instance
named CIDInit, which contains the definitions of commands executed by
the CMap and CIDFont files.

Note For Level 2 interpreters, it is not necessary for the CIDInit file to be run
during Sys/Start, because it will be found by the resource machinery when a
CMap or CIDFont file executes the statement /CIDInit /ProcSet find-
resource. However, the file is preloaded to improve performance.

3. The installer may optionally load one or more files outside the server loop
for improved performance.

Note To assist developers, the Sys/Start file encloses fragments of PostScript code
in comments. It may be easier to identify a pair of comments during installa-
tion than to parse PostScript language code.

Obtaining Equivalent Behavior from Level 1 and Level 2 interpreters

CID-keyed fonts can operate on either Level 1 or Level 2 PostScript
interpreters, but only if certain PostScript language code is present and some
operators redefined. The file FS/Level1 defines procedures that mimic the
Level 2 Resource Manager on Level 1 interpreters. The procedures that it
defines include findresource, defineresource, and resourceforall. This
“resource manager” knows only about resources specific to CID-keyed and
composite fonts.

The file FS/Level2 uses the Level 2 Resource Manager to define the CIDFont
and CMap resource types and the procedures necessary for finding these
resources.

Example A.3 shows a PostScript language code fragment that usually appears
as the first PostScript language statements in the Sys/Start file, immediately
after the header comments.

The code fragment uses the Level 2 PostScript operator languagelevel to
determine whether an interpreter is Level 1 or Level 2. It then runs the file of
appropriate routines and redefinitions: FS/Level1 for Level 1 PostScript inter-
preters, and FS/Level2 for Level 2 interpreters.

 A.3 Installation Requirements 87

The languagelevel resource support files must be executed before the CID-
keyed font support files are run. This is because CID-keyed fonts rely on
operators defined or redefined by these files.

Example A.3 Running the language level file

%%BeginResource: file AdobeCompositeFontSupport
/languagelevel where { pop languagelevel 2 ge } { false

} ifelse
{{ (FS/Level2) } { (FS/Level1) } ifelse run } stopped

clear
%%EndResource

Running Sys/CIDInit and Optional Files

Immediately after the language level PostScript language fragment, the
installer must insert the CIDInit line in the Sys/Start file. One or more
optional files can also be loaded at this time, as shown by Example A.4:

Example A.4 Running Sys/CIDInit

%%BeginResource: file AdobeCIDKeyedFontSupport
{ /CIDInit /ProcSet findresource } stopped clear
{ /83pv-RKSJ-H /CMap findresource } stopped clear
%%EndResource

The Sys/CIDInit file has four main functions:

1. It defines the BuildChar procedure used by CID-keyed fonts. The Build-
Char procedure provides compatibility mode support. If native CIDFont
support is present, no BuildChar procedure is needed.

2. It redefines the findfont operator to support CID-keyed fonts. In Level 2
interpreters, this is done by replacing procedures in the /Font resource
category, not by redefining findfont. The procedures replaced are find-
resource, resourcestatus, and resourceforall.

3. It defines the operators needed to properly execute the CMap resource
files.

4. It defines the StartData procedure.

Note The procedures defined or redefined in the Sys/CIDInit file are implemented
in terms of internal procedures and variables beginning with the sequence
cid_ (so that the possibility of name conflicts is reduced). The use this leading
sequence by user or application programs is strongly discouraged.

88 Appendix A: Installing CID-Keyed Fonts on PostScript Interpreters (11 Jun 93)

After the command to run the Sys/CIDInit file, there can be one or more
commands to load optional files. If a system is going to make extensive and
regular use of a particular CMap file, for example, it may be most efficient to
load it here, outside the server loop.

Files loaded in Sys/Start are available for all jobs without reloading, provide
better caching, and can improve the efficiency of the redefined operators,
such as findfont or the /Font resource operators. Files which may be loaded
in this way include any CMap/ file.

Summary of Modifications to Sys/Start

Example A.5 summarizes the changes to make to an existing Sys/Start file. If
there is no Sys/Start file already on the hard drive, the installer must create
one, which is essentially the same as Example A.5, with the addition of
header comments.

Example A.5 Summary of Sys/Start modifications

<<Sys/Start header comments here >>

%%BeginResource: file AdobeCompositeFontSupport
/languagelevel where { pop languagelevel 2 ge } { false

} ifelse
{{ (FS/Level2) } { (FS/Level1) } ifelse run } stopped

clear
%%EndResource
%%BeginResource: file AdobeCIDKeyedFontSupport
{ /CIDInit /ProcSet findresource } stopped clear
{ /83pv-RKSJ-H /CMap findresource } stopped clear
%%EndResource

<<Remainder of unmodified Sys/Start file
(if any) follows here >>

A.4 Font Naming

If CID-keyed fonts are named in a particular way, the font machinery finds
and executes them easily. This section explains the recommended way to
name CID-keyed fonts.

The redefined findfont operator looks for the name of a CID-keyed font in
two pieces. One piece is CIDFontName, which is looked for in the CIDFont/
directory. The other piece is the CMapName, which is looked for in the
CMap/ directory. The two parts fit together like this:

<CIDFontName>– –<CMapName>

 A.5 Calculating Unique IDs 89

where <CIDFontName> is the name of the CIDFont file and <CMapName>
is the name of the CMap to be used with that CIDFont. The two parts are
separated by a delimiter, which should be a double hyphen. (For backwards
compatibility, a single hyphen is allowed, but Adobe encourages the use of
the double hyphen.) For example, the font Ryumin–Light–83pv–RKSJ–H is
made up of the two files Ryumin–Light and 83pv–RKSJ–H. Another font
Mincho–Light–– 83pv–RKSJ–H (note the use of the preferred double
hyphen) is made up of Mincho–Light and 83pv–RKSJ–H.

The two filename parts are themselves made up of smaller elements, which
are outlined in Adobe Technical Note #5088, Font Naming Issues. The main
purposes of such a font naming strategy however, can easily be summed up:

• It ensures that complex CID-keyed font names work properly with the
redefined findfont operator.

• It provides guidelines for names that impart information about the font and
its character set and encoding.

• It ensures that each font name is unique, which is necessary for correct
handling.

Generally speaking, CIDFont names describe the glyphs that make up a
particular collection; CMap names describe a particular combination of char-
acter set and encoding that is font-independent.

A.5 Calculating Unique IDs

Individual CMap files consume identification numbers based on the nature of
the ranges specified in the codespace definition. Codespace represents the set
of valid input codes. See section 5 for an explanation of how codespace is
defined. Unique ID numbers have been precalculated for all standard Japa-
nese CMap files; a developer needs to figure the count only when creating a
new CMap. Further, calculating Unique IDs using UIDBase and UIDOffset,
as shown here, is necessary only for compatibility mode operation; in native
mode operation, the CMap and CIDfont are identified by XUID, which
requires no calculation.

For this calculation example, the ranges specified for codespace are assumed
to be <00> to <80>, <8140> to <9FFC>, <A0> to <DF>, and <E040> to
<FBFC>.

Unique ID numbers are assigned on a per-row basis; the total count of ID
numbers consumed is equal to the count of one-byte ranges plus the count of
two-byte codes (within a given listed range) that differ only in the last byte.

90 Appendix A: Installing CID-Keyed Fonts on PostScript Interpreters (11 Jun 93)

Note There can be three-byte, four-byte, and greater ranges. However, the rule of
thumb is the same: the count of codes within a given listed range that differ
only in the last byte.

In this example, there are 61 unique ID numbers consumed. There are two
one-byte ranges (<00> to <80> and <A0> to <DF>). Between <8140> and
<9FFC> there are 31 ranges that differ only in the last byte. <8140> to
<81FF> is the first such range, <8200> to <82FF> is the second, and so forth.
The range <E040> to <FBFC> includes 28 such ranges. The count of the
numbers consumed is therefore 2 + 31 + 28 = 61.

A.5.1 Assigning the ID Count

Because additional characters may be added to a collection after its initial
production, Adobe encourages developers to “pad” the total count to allow
for future expansion. For example, while the CMap file Ext-RKSJ-H
consumes 61 identification numbers for caching, the number is “padded” to
70 to accommodate future additions.

Note Padding is also a good idea because once a developer has established a
UIDOffset for a font marketed in the field, that number cannot be changed.

When assigning UIDOffset values to a group of CMap files that refer to a
single CIDFont, enough room must be left between CMap files so that no
identification numbers overlap. If overlapping occurs, bitmaps cached by a
previous job may be obtained that reference the wrong glyph. This is a partic-
ular problem for service bureaus where cached characters might be written to
disk and remain there during subsequent jobs.

Table A.2 shows the standard CMap files provided by Adobe, their ID counts,
and their UIDOffset values.

Table A.2UIDOffset values

IDs Count UID
CMap for Required Used Offset

83pv-RKSJ-H 61 70 0
Ext-RKSJ-H 61 70 70
Add-RKSJ-H 61 70 140
RKSJ-H 61 70 210
H 94 100 280
EXT-H 94 100 380
NWP-H 94 100 480
Add-H 94 100 580
EUC-H 94 100 680
Roman 1 5 780
WP-Symbol 1 5 785

 A.6 Miscellaneous Notes 91

Hankaku 1 5 790
Katakana 1 5 795
Add-RKSJ-V 3 7 800
Add-V 3 7 807
EUC-V 3 7 814
Ext-RKSJ-V 3 7 821
Ext-V 5 9 828
NWP-V 6 10 837
RKSJ-V 3 7 847
V 3 7 852

A.6 Miscellaneous Notes

• In compatibility mode, CMaps can only refer to a single CID or base font.

• In compatibility mode, Codespaces cannot exceed two bytes.

92 Appendix A: Installing CID-Keyed Fonts on PostScript Interpreters (11 Jun 93)

93

APPENDIX B

ATM-J Compatibility
for CID-Keyed Fonts

This appendix explains how to install CID-keyed fonts on a Macintosh
computer for use with Adobe Type Manager, Japanese Edition (ATM-J). This
appendix is specific to both Macintosh and ATM-J version 3.5 or greater.

B.1 Installing CID-Keyed Fonts on the Macintosh

When CIDFont and CMap files have been properly installed, ATM-J can
parse and make use of them directly, without recourse to other system
support files on the system such as those detailed in Appendix A.

As explained in section 2, the CIDFont file contains glyph data indexed by
character ID. The CMap file specifies the subset of that character collection
to be used, called the character set (or charset). A CMap file also imposes an
encoding on that subset, in which character codes are mapped to CIDs.

B.1.1 CIDFont Files

As shown in section 3, a CIDfont file is essentially an ASCII text file with
character description and other data at the tail. When transferred to or created
on the Macintosh, it occupies the data fork of a Macintosh file. For compati-
bility with ATM-J, a CIDFont must occupy the data fork; ATM-J never refer-
ences the resource fork.

Note So that the correct file icon can be displayed on the desktop, the resource fork
of a CIDFont file should include BNDL, FREF, and ICN# resources. Each
CIDFont file installed on a Macintosh must also have its file type set to
LWFN. ATM-J never references the file creator’s signature.

For System 7.1 or later, install CIDFonts in the Fonts folder; for System 6.x,
install CIDFonts in the System folder. When searching for CIDFonts, ATM-J
looks first in the System folder, and then checks the Fonts and Extensions
folders, if present.

For ATM-J to recognize CID-keyed fonts, you must also install the corre-
sponding screen font resources. Screen font resources are described in tech-
nical documentation available from Apple Computer, Inc.

94 Appendix B: ATM-J Compatibility for CID-Keyed Fonts (11 Jun 93)

B.1.2 CMap Files

As with CIDfont files, a CMap file is an ASCII text file. When transferred to
or created on the Macintosh, it also must occupy the data fork of a Macintosh
file. ATM-J never references the resource fork, and it does not check the file
type or creator’s signature of CMap files. Adding specific resources to the
resource fork is not necessary.

In the past, Adobe composite fonts installed on the Macintosh resulted in the
creation of a Common folder within the System folder. This contains system
support files for composite fonts. Other folders within the Common folder
include

/encodings
/charstrings
/Generic

Adobe recommends that during the installation process, CMap files be copied
to a folder called CMaps, within the Common folder. ATM-J looks for CMaps
only in the /Common/CMap folder; it expects the Common folder to be
located in the System folder.

Note So that the correct file icon can be displayed on the desktop, the resource fork
of a CMap file should include BNDL, FREF, and ICN# resources. Each
CMap file installed on a Macintosh must also have its file type set to LWFN.
ATM-J never references the file creator’s signature.

B.2 Naming Conventions

File naming is important to the Macintosh and to ATM-J. Font names must be
unique, and the Macintosh derives font names from filenames in a particular
fashion. For information on font naming conventions, see Adobe Technical
Note #5088, Font Naming Issues.

B.3 Parsing Considerations

ATM-J does not include a complete PostScript interpreter, and consequently
parses CIDFont and CMap files in a simple fashion. To remain compatible
with ATM-J, such files must strictly conform to the document structuring
conventions, the syntax and lexical conventions as explained in Sections 3
through 7, and the additional ATM-J parsing rules outlined here. All CIDFont
and CMap examples in this document do conform and exhibit the properties
necessary for them to be parsable by ATM-J.

ATM-J (and other simplified PostScript language parsers) generally separate
the text of a CID-keyed font program into tokens according to PostScript
language rules as defined in PostScript Language Reference Manual, Second

 B.4 Miscellaneous Notes 95

Edition. Comments are ignored when looking for tokens. Parsers such as
ATM-J check tokens for certain keywords when they occur at the “top level”
of code (not when they are contained in procedure bodies), and take action
based on those keywords. For these reasons, for CIDFont and CMap files to
be compatible with ATM-J, they must conform to these rules:

• Individual tokens and charstrings may not exceed 65535 characters in
length.

• Most keywords are names that are associated with values in a dictionary;
the initial portion of a CIDFont program is assumed to contain names to be
inserted into a CIDFont dictionary.

• If the keyword eexec appears, the text following it must be encrypted. No
assignments of values to names may occur in the plain text that follows the
encrypted portion. See Adobe Type 1 Font Format for more information
about eexec encryption.

• When a simple value (integer, real, string, or Boolean) is associated with a
name in a dictionary, that value must follow the name immediately as the
next token.

For example, Boolean values may be only the tokens true or false. Simple
values, such as integers, must explicitly be written after a name—they may
not be computed by a sequence of PostScript language constants and oper-
ators.

Right way: /CIDFontType 1 def

Wrong way: 1 /CIDFontType exch def

Wrong way: /CIDFontType 2 1 sub def

Even though both “wrong” ways are legal and equivalent PostScript
language code, they do not conform to the parsing rules required by ATM-
J.

• When an array is expected as a value, the array must immediately follow
the name to which it is assigned. An array must begin with either [or { and
terminate with the corresponding } or]. Numeric contents must occur as
single tokens within the array delimiters.

• When a begin operator occurs to change the current dictionary, it must
end with one and only one occurrence of the corresponding end operator.
Begins and ends must be accurately paired.

B.4 Miscellaneous Notes

• ATM-J supports Shift-JIS-encoded CMap files. It does not currently
support JIS or EUC-encoded CMaps.

96 Appendix B: ATM-J Compatibility for CID-Keyed Fonts (11 Jun 93)

• All double-byte characters must be of full width where full width is 1000
character space units to the em. All double-byte characters must be of
fixed width at 1000/em (full width).

• ATM-J does not support the usecmap operator. Because of this, ATM-J
does not support the vertical variant CMaps (~V).

• ATM-J does not support CMap operators that specify characters by name.

• ATM-J currently does not support any CMap range operations in which
more than the last byte varies between two input codes. For ATM-J version
3.5 to work properly, only the last byte in a range operation can vary.

• When parsing rearranged fonts, ATM-J is particularly sensitive to the
following document structuring comments:

%ADOResourceSubCategory: RearrangedFont
%ADOStartRearrangedFont

These comments must be used as documented in Section 6.

97

APPENDIX C

Obtaining
CID Information

There are many steps in developing CID-keyed fonts. Some parts of the
development process require ID numbers, files, or technical notes from
Adobe Systems. This appendix is designed to help you determine the infor-
mation you need and then help you to obtain it.

When writing to Adobe or calling for information, use the following
addresses:

Adobe Systems Incorporated
Developer Support
345 Park Avenue
San Jose, CA 95110
U.S.A.
Telephone: (408) 536-6000
Fax: (408) 537-6000

Adobe Systems Japan
Gate City Ohsaki East Tower
1-11-2 Ohsaki, Shinagawa-ku
Tokyo 141-0032, Japan
Phone: 81-3-5740-2620 (Group)
Fax: 81-3-5740-2621

All contact for development information should be with Developer Support,
but there are several sources of information within Developer Support. If you
require a unique ID number or information about unique IDs, it is important
to address correspondence or fax transmission to Attention: Unique ID Coor-
dinator within the Developer Support group. Table B.3 shows whom to
contact at Adobe Systems for your CID-keyed font development needs.

Table B.3 Whom to contact at Adobe Systems

Requirement Contact

UIDBase number Unique ID Coordinator

XUID organization number Unique ID Coordinator

98 Appendix C: Obtaining CID Information (11 Jun 93)

Registry Strings Unique ID Coordinator

CIDInit Procset Developer Support

System Support files Developer Support

Japanese Language CMap Files Developer Support

Font Naming Issues
Technical Note #5088 Developer Support

CID-Keyed Japanese Font Glyph Complement
Technical Note #5078 Developer Support

99

Index

Symbols

%!, comment conventions 21, 44, 60
%%BeginResource, comment

conventions 21, 44, 61
%%DocumentNeededResources,

comment conventions 44, 56
%%EndData, comment conventions

33
%%EndResource, comment

conventions 34, 44, 61, 67
%%EOF, comment conventions 54
%%Include, comment conventions

21, 61
%%IncludedResources, comment

conventions 56
%%IncludeResource, comment

conventions 44
%%Title, comment conventions 21,

44
%%Version, comment conventions

22, 45, 61
%ADOStartRearrangedFont,

comment conventions 62
.notdef 53

A

Adobe Type Manager, Japanese
Edition, see ATM-J

ATM-J 10, 33, 57, 68
compatibility with CIDFonts 93
parsing rules 94

B

Base font
Type 1 and Type 3 in rearranged

font 64

beginbfchar 64, 71
beginbfrange 72
begincidchar 56, 73
begincidrange 56, 73
begincmap 46, 54, 56, 71, 74
begincodespacerange 71, 74
beginnotdefchar 75
beginnotdefrange 76
beginrearrangedfont 57, 62, 77
beginusematrix 62, 63, 78
BuildChar 87

C

CDevproc 36
Character

code 12
codes 9, 12
collection 11, 13
definition 11
identifier (CID) 9, 11
name 12
names 9
selector 50
set 12, 41

Charset 12, 41
Charstring 27

data 17
definition of length 28

CID 0, default notdef character 13
CID procset, initializing 61
cid_ prefix 87
CIDCount 29, 36
CIDFont

and VM 17
CDevproc key 36
CIDCount key 36
CIDFontName key 36
CIDFontType key 36

100 Index (11 June 93)

CIDFontVersion key 36
CIDMapOffset key 36
CIDSystemInfo key 36
comment conventions 21
compatibility with ATM-J 93
conceptual overview 11
data section 27, 35
encoding 41
example 18–21
FDArray key 37
FDBytes key 37
FontBBox key 38
FontInfo key 38
GDBytes key 38
handling subroutines 32
installing 81
internal organization 17
keywords 34
like and unlike PostScript

language 16
Ordering key of CIDSystemInfo

37
Registry key of CIDSystemInfo

37
resource 12
resource instance 17
structural exceptions from Type 1

and Type 3 31
subset fonts 29
Supplement key of

CIDSystemInfo 37
tutorial 16
UIDBase key 38
XUID key 38

CIDFont file
contents 14
Macintosh implementation 93
Macintosh resource fork 93

CIDFontName 23, 34, 36
CIDFontType 16, 23, 31, 36, 81
CIDFontVersion 22, 23, 36
CIDInit 34, 45, 61, 82

file 86
procset 22
system support file 44

CIDInit 34
CID-keyed font files, see CIDFont

and CMap
CIDMap 27, 35

and character ID 17
empty interval 30

first interval 29
last interval 29

CIDMapOffset 27, 36
cidrange 51
CIDSystemInfo 36, 46
CMap

character code map 12
conceptual overview 11
defined 41
installing 81
operators by group 70–71
resource 12, 53
resource dictionary 46
resource instance 42

CMap file 42, 53
comment conventions 44
errors and PostScript interpreter

68
Macintosh installation 94
Macintosh resource fork 94
nomenclature 68
operator order 71
operators 67
purpose and contents 14
stand-alone 42–44
using another CMap file 55

CMapName 46, 54, 56
CMapType 47
CMapVersion 47, 56
Code mapping 50

range limitations 51
rearranged font 64
requirements 52

Codespace 42, 48, 89
limitation on ranges 49
requirements 48

Comment conventions
%! 44, 60
%%BeginResource 21, 44, 61
%%DocumentNeededResources

44, 56
%%EndData 33
%%EndResource 34, 44, 61, 67
%%EOF 54
%%Include 21, 61
%%IncludedResources 56
%%IncludeResource 44
%%Title 21, 44
%%Version 22, 45, 61
%ADOStartRearrangedFont 62
CIDFont file 21

CMap file 44
Compatibility mode 12, 34, 41, 91
Component font index 50
Component fonts 62

array 62
Component fonts, of rearranged font

57
Composite fonts 57, 81
Copyrights for CID-Keyed font

programs 10
CPSI (Configurable PostScript

Interpreter) 9

D

Data section of CIDFont, contents 35
defineresource 45, 86
Developer Support, contacting 97
dictfull error 23, 45
Document structuring conventions

21
DPS (Display PostScript) 9
dpsstartup.ps 82

E

eexec 95
Empty interval 30, 52
Encoding of CIDFonts 41
endbfchar 64, 71
endbfrange 72
endcidchar 56, 73
endcidrange 52, 56, 73
endcmap 54, 71, 74
endcodespacerange 74
endnotdefchar 75
endnotdefrange 76
endrearrangedfont 57, 62, 67, 77
endusematrix 62, 63, 78
Errors

CMap file operators 68
dictfull 23, 45

F

FDArray 17, 25, 30, 33, 35, 37
structure of 30

FDBytes 28, 30, 37
findfont 87
findresource 22
findresource 22, 45, 61, 71, 86, 87

Index 101

First interval of CIDMap 29
Font dictionary (FD) index 28
Font naming suggestions 88
FontBBox 25, 38
FontInfo 38
FontInfo dictionary 27
FontMatrix 25
fonts/NotDefFont, system support file

82
FS/Level1, system support file 82, 86
FS/Level2, system support file 82, 86

G

Gaiji characters
adding to rearranged font 66

GDBytes 28, 38
Glyph

data 17
definition 11
descriptor (GD) value 28
rasterizing requirements 17

I

Initializing the CID procset 45, 61
Installing

algorithm for file installation 84
CIDFonts and CMaps 93

ioerror 40

J

Japanese Type 1 fonts, see Composite
fonts

K

Keywords in CIDFont, required and
optional 34

L

languagelevel 86
Last interval of CIDMap 29
Length of a charstring,definition 28
Level 1 and Level 2 interpreters 86

M

Macintosh
naming conventions for CIDFont

and CMap files 94

N

Naming conventions
CIDFonts and CMaps on

Macintosh 94
Native mode 41

support for CID-keyed fonts 25
Native support (native mode) 12
Notdef

characters 52
CID 0 as default 13
ranges 52
when characters shown 52

Notdef characters 30

O

Ordering 13, 21, 24, 37, 44
Organization of a CIDFont 17
OtherSubr 32

P

Private dictionary 30, 32
Procset, initializing 45

R

Rearranged font 69
adding gaiji characters 66
contents 57
defined 57
example 59–60
restrictions 57

Registry 13, 21, 24, 37, 44
Resource instance

CIDFont 17
resourceforall 86, 87
resourcestatus 87
Roman characters, replacing in

rearranged font 63

S

SDBytes 32
Shift-JIS-encoded CMap files, and

ATM-J 95
show 12
StartData 22, 33, 34, 39, 87

binary and hex arguments 34

examples 40
syntax 39

Startup file
modifying 85

startup.ps 82
SubrMap 27, 32, 33, 35
SubrMapOffset 32, 33
Subroutine Descriptor (SD) values

32
Subroutine information in CIDFonts

32
Subrs 32
Supplement 13, 21, 24, 37, 44

no match between CIDfont and
CMap 24

Sys/CIDInit file
cid_ prefix 87
functions 87

Sys/Start file 82, 85
summary of modifications 88

System support files 22, 44, 81
font/NotDefFont 82
FS/Level1 82, 86
FS/Level2 82, 86
version numbers 84

T

Template font 57, 69
defined 57

Type 0 composite fonts 81
Type 1 fonts

part of a CIDFont 50
similarities to CIDFonts 16
structural exceptions in CIDFonts

31
Type 3 fonts

part of a CIDFont 50
similarities to CIDFonts 16
structural exceptions in CIDFonts

31

U

UIDBase 25, 26, 38, 47, 89
UIDOffset 25, 38, 47, 56, 89, 90

count 47
Unique ID 38, 47

calculating 89
count 90
numbers 25

102 Index (11 June 93)

obtaining 97
usecmap 56, 71, 79

ATM-J 96
usefont 62, 79
UserGaiji 67

V

Version control 13, 46
CIDFont and CMap files 23

W

WMode 48, 56
Writing Mode, WMode 48

X

XUID 25, 26, 38, 47, 56, 89
described 48
special value 1000000 26

	List of Figures
	List of Tables
	Adobe CMap and CIDFont Files Specification
	1 Introduction
	1.1 Compatibility
	1.2 Copyrights for CID-Keyed Font Programs
	1.3 Overview

	2 CMap and CIDFont Resource Architecture
	2.1 Terminology
	2.2 Native Support Versus Compatibility Mode
	2.3 The Character Collection
	2.4 Version Control
	2.5 The CIDFont File
	2.6 The CMap File

	3 CIDFont Tutorial
	3.1 CIDFont File Components
	3.2 CIDFont Example

	4 CIDFont Reference
	4.1 CIDFont Organization
	4.2 CIDFont Resource Keys
	4.3 Defining the CIDFont Resource

	5 CMap Tutorial
	5.1 CMap File Components
	5.2 First Example: Stand-Alone CMap File
	5.3 Closing the CMap File and Creating the Resource Instance
	5.4 Second Example: A CMap File That Uses Another

	6 Rearranged Font Tutorial
	6.1 Rearranged Font Components
	6.2 Rearranged Font Example

	7 CMap Reference
	7.1 CMap File Nomenclature and Lexical Elements
	7.2 Operator Summary
	7.3 CMap File Overview
	7.4 Operator Details

	Installing CID-Keyed Fonts on PostScript Interpreters
	ATM-J Compatibility for CID-Keyed Fonts
	Obtaining CID Information
	Index

